1,921 research outputs found

    High temperature ferromagnetism of Li-doped vanadium oxide nanotubes

    Full text link
    The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magnetic and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.Comment: with some amendments published in Europhysics Letters (EPL) 88 (2009) 57002; http://epljournal.edpsciences.or

    A wetting and drying scheme for ROMS

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Computers & Geosciences 58 (2013): 54-61, doi:10.1016/j.cageo.2013.05.004.The processes of wetting and drying have many important physical and biological impacts on shallow water systems. Inundation and dewatering effects on coastal mud flats and beaches occur on various time scales ranging from storm surge, periodic rise and fall of the tide, to infragravity wave motions. To correctly simulate these physical processes with a numerical model requires the capability of the computational cells to become inundated and dewatered. In this paper, we describe a method for wetting and drying based on an approach consistent with a cell-face blocking algorithm. The method allows water to always flow into any cell, but prevents outflow from a cell when the total depth in that cell is less than a user defined critical value. We describe the method, the implementation into the three-dimensional Regional Oceanographic Modeling System (ROMS), and exhibit the new capability under three scenarios: an analytical expression for shallow water flows, a dam break test case, and a realistic application to part of a wetland area along the Georgia Coast, USA.We acknowledge support for studies demonstrated in this manuscript that were supported by the National Science Foundation,Division of Industrial Innovation and Partnerships (IIP)under the 3470Z. Defne etal./ Renewable Energy 36(2011)3461e3471 Partnerships for Innovation Program Grant IIP-0332613,and from the Strategic Energy Institute at Georgia Institute of Technology via a Creating Energy Options grant and the 104B Georgia Water Resources Institute Funding Program,and also by the Department of Energy,Wind and Hydropower Technologies Program award number DE-FG36-08GO18174 and by the state of Georgia

    Magnetic properties of the low-dimensional spin-1/2 magnet \alpha-Cu_2As_2O_7

    Full text link
    In this work we study the interplay between the crystal structure and magnetism of the pyroarsenate \alpha-Cu_2As_2O_7 by means of magnetization, heat capacity, electron spin resonance and nuclear magnetic resonance measurements as well as density functional theory (DFT) calculations and quantum Monte Carlo (QMC) simulations. The data reveal that the magnetic Cu-O chains in the crystal structure represent a realization of a quasi-one dimensional (1D) coupled alternating spin-1/2 Heisenberg chain model with relevant pathways through non-magnetic AsO_4 tetrahedra. Owing to residual 3D interactions antiferromagnetic long range ordering at T_N\simeq10K takes place. Application of external magnetic field B along the magnetically easy axis induces the transition to a spin-flop phase at B_{SF}~1.7T (2K). The experimental data suggest that substantial quantum spin fluctuations take place at low magnetic fields in the ordered state. DFT calculations confirm the quasi-one-dimensional nature of the spin lattice, with the leading coupling J_1 within the structural dimers. QMC fits to the magnetic susceptibility evaluate J_1=164K, the weaker intrachain coupling J'_1/J_1 = 0.55, and the effective interchain coupling J_{ic1}/J_1 = 0.20.Comment: Accepted for publication in Physical Review

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    A quantitative approach to neuropsychiatry: The why and the how

    Get PDF
    The current nosology of neuropsychiatric disorders allows for a pragmatic approach to treatment choice, regulation and clinical research. However, without a biological rationale for these disorders, drug development has stagnated. The recently EU-funded PRISM project aims to develop a quantitative biological approach to the understanding and classification of neuropsychiatric diseases to accelerate the discovery and development of better treatments. By combining clinical data sets from major worldwide disease cohorts and by applying innovative technologies to deeply phenotype stratified patient groups, we will define a set of quantifiable biological parameters for social withdrawal and cognitive deficits common to Schizophrenia (SZ), Major Depression (MD), and Alzheimer's Disease (AD). These studies aim to provide new classification and assessment tools for social and cognitive performance across neuropsychiatric disorders, clinically relevant substrates for treatment development, and predictive, preclinical animal systems. With patients and regulatory agencies, we seek to provide clear routes for the future translation and regulatory approval for new treatments and provide solutions to the growing public health challenges of psychiatry and neurology

    Metacognition as Evidence for Evidentialism

    Get PDF
    Metacognition is the monitoring and controlling of cognitive processes. I examine the role of metacognition in ‘ordinary retrieval cases’, cases in which it is intuitive that via recollection the subject has a justiïŹed belief. Drawing on psychological research on metacognition, I argue that evidentialism has a unique, accurate prediction in each ordinary retrieval case: the subject has evidence for the proposition she justiïŹedly believes. But, I argue, process reliabilism has no unique, accurate predictions in these cases. I conclude that ordinary retrieval cases better support evidentialism than process reliabilism. This conclusion challenges several common assumptions. One is that non-evidentialism alone allows for a naturalized epistemology, i.e., an epistemology that is fully in accordance with scientiïŹc research and methodology. Another is that process reliabilism fares much better than evidentialism in the epistemology of memory

    Antifungal Activity of Amphiphilic Perylene Bisimides

    Full text link
    [EN] Perylene-based compounds, either naturally occurring or synthetic, have shown interesting biological activities. In this study, we report on the broad-spectrum antifungal properties of two lead amphiphilic perylene bisimides, compounds 4 and 5, which were synthesized from perylene-3,4,9,10-tetracarboxylic dianhydride by condensation with spermine and an ammonium salt formation. The antifungal activity was evaluated using a collection of fungal strains and clinical isolates from patients with onychomycosis or sporotrichosis. Both molecules displayed an interesting antifungal profile with MIC values in the range of 2-25 mu M, being as active as several reference drugs, even more potent in some particular strains. The ammonium trifluoroacetate salt 5 showed the highest activity with a MIC value of 2.1 mu M for all tested Candida spp., two Cryptococcus spp., two Fusarium spp., and one Neoscytalidium spp. strain. Therefore, these amphiphilic molecules with the perylene moiety and cationic ammonium side chains represent important structural features for the development of novel antifungals.This study was supported by grant 201680I008 (awarded to M.A.G.-C.) from the Spanish Government (Consejo Superior de Investigaciones Cientificas) and grant 3756 of the University of Antioquia.Roa-Linares, VC.; Mesa-Arango, AC.; Zaragoza, RJ.; GonzĂĄlez-Cardenete, MA. (2022). Antifungal Activity of Amphiphilic Perylene Bisimides. Molecules. 27(20):1-12. https://doi.org/10.3390/molecules27206890112272

    Multi-class classification based on quantum state discrimination

    Get PDF
    We present a general framework for the problem of multi-class classification using classification functions that can be interpreted as fuzzy sets. We specialize these functions in the domain of Quantum-inspired classifiers, which are based on quantum state discrimination techniques. In particular, we use unsharp observables (Positive Operator-Valued Measures) that are determined by the training set of a given dataset to construct these classification functions. We show that such classifiers can be tested on near-term quantum computers once these classification functions are “distilled” (on a classical platform) from the quantum encoding of a training dataset. We compare these experimental results with their theoretical counterparts and we pose some questions for future research

    A century of limnological evolution and interactive threats in the Panama Canal: Long-term assessments from a shallow basin

    Get PDF
    Large tropical river dam projects are expected to accelerate over the forthcoming decades to satisfy growing demand for energy, irrigation and flood control. When tropical rivers are dammed the immediate impacts are relatively well studied, but the long-term (decades-centuries) consequences of impoundment remain poorly known. We combined historical records of water quality, river flow and climate with a multi-proxy (macrofossils, diatoms, biomarkers and trace elements) palaeoecological approach to reconstruct the limnological evolution of a shallow basin in Gatun Lake (Panama Canal, Panama) and assess the effects of multiple linked factors (river damming, forest flooding, deforestation, invasive species, pollution and hydro-climate) on the study area. Results show that a century after dam construction, species invasion, deforestation and salt intrusions have forced a gradual change in the study basin from a swamp-type environment towards a more saline lake-governed system of benthic–littoral production likely associated with the expansion of macrophyte stands. Hydrology still remains the most important long-term (decades) structural factor stimulating salinity intrusions, primary productivity, deposition of minerals, and reduction of water transparency during wet periods. During dry periods, physical-chemical conditions are in turn linked to clear water and aerobic conditions while nutrients shift to available forms for the aquatic biota in the detrital-rich reductive sediments. Our study suggests that to preserve the natural riverine system functioning of this area of the Panama Canal, management activities must address long-term ecosystem structural drivers such as river flow, runoff patterns and physical-chemical conditions
    • 

    corecore