410 research outputs found
A Bayesian Approach to Comparing Cosmic Ray Energy Spectra
A common problem in ultra-high energy cosmic ray physics is the comparison of
energy spectra. The question is whether the spectra from two experiments or two
regions of the sky agree within their statistical and systematic uncertainties.
We develop a method to directly compare energy spectra for ultra-high energy
cosmic rays from two different regions of the sky in the same experiment
without reliance on agreement with a theoretical model of the energy spectra.
The consistency between the two spectra is expressed in terms of a Bayes
factor, defined here as the ratio of the likelihood of the two-parent source
hypothesis to the likelihood of the one-parent source hypothesis. Unlike other
methods, for example chi^2 tests, the Bayes factor allows for the calculation
of the posterior odds ratio and correctly accounts for non-Gaussian
uncertainties. The latter is particularly important at the highest energies,
where the number of events is very small.Comment: 22 pages, 10 figures, accepted for publication in Ap
Observed Limits on Charge Exchange Contributions to the Diffuse X-ray Background
We present a high resolution spectrum of the diffuse X-ray background from
0.1 to 1 keV for a ~1 region of the sky centered at l=90, b=+60 using a
36-pixel array of microcalorimeters flown on a sounding rocket. With an energy
resolution of 11 eV FWHM below 1 keV, the spectrum's observed line ratios help
separate charge exchange contributions originating within the heliosphere from
thermal emission of hot gas in the interstellar medium. The X-ray sensitivity
below 1 keV was reduced by about a factor of four from contamination that
occurred early in the flight, limiting the significance of the results. The
observed centroid of helium-like O VII is 568+2-3 eV at 90% confidence. Since
the centroid expected for thermal emission is 568.4 eV while for charge
exchange is 564.2 eV, thermal emission appears to dominate for this line
complex, consistent with much of the high-latitude O VII emission originating
in 2-3 x 10^6 K gas in the Galactic halo. On the other hand, the observed ratio
of C VI Ly gamma to Ly alpha is 0.3+-0.2. The expected ratios are 0.04 for
thermal emission and 0.24 for charge exchange, indicating that charge exchange
must contribute strongly to this line and therefore potentially to the rest of
the ROSAT R12 band usually associated with 10^6 K emission from the Local Hot
Bubble. The limited statistics of this experiment and systematic uncertainties
due to the contamination require only >32% thermal emission for O VII and >20%
from charge exchange for C VI at the 90% confidence level. An experimental gold
coating on the silicon substrate of the array greatly reduced extraneous
signals induced on nearby pixels from cosmic rays passing through the
substrate, reducing the triggered event rate by a factor of 15 from a previous
flight of the instrument.Comment: 14 pages, 7 figures, to be published in Ap
Performance of two Askaryan Radio Array stations and first results in the search for ultra-high energy neutrinos
Ultra-high energy neutrinos are interesting messenger particles since, if
detected, they can transmit exclusive information about ultra-high energy
processes in the Universe. These particles, with energies above
, interact very rarely. Therefore, detectors that
instrument several gigatons of matter are needed to discover them. The ARA
detector is currently being constructed at South Pole. It is designed to use
the Askaryan effect, the emission of radio waves from neutrino-induced cascades
in the South Pole ice, to detect neutrino interactions at very high energies.
With antennas distributed among 37 widely-separated stations in the ice, such
interactions can be observed in a volume of several hundred cubic kilometers.
Currently 3 deep ARA stations are deployed in the ice of which two have been
taking data since the beginning of the year 2013. In this publication, the ARA
detector "as-built" and calibrations are described. Furthermore, the data
reduction methods used to distinguish the rare radio signals from overwhelming
backgrounds of thermal and anthropogenic origin are presented. Using data from
only two stations over a short exposure time of 10 months, a neutrino flux
limit of is
calculated for a particle energy of 10^{18}eV, which offers promise for the
full ARA detector.Comment: 21 pages, 34 figures, 1 table, includes supplementary materia
First Constraints on the Ultra-High Energy Neutrino Flux from a Prototype Station of the Askaryan Radio Array
The Askaryan Radio Array (ARA) is an ultra-high energy ( eV) cosmic
neutrino detector in phased construction near the South Pole. ARA searches for
radio Cherenkov emission from particle cascades induced by neutrino
interactions in the ice using radio frequency antennas ( MHz)
deployed at a design depth of 200 m in the Antarctic ice. A prototype ARA
Testbed station was deployed at m depth in the 2010-2011 season and
the first three full ARA stations were deployed in the 2011-2012 and 2012-2013
seasons. We present the first neutrino search with ARA using data taken in 2011
and 2012 with the ARA Testbed and the resulting constraints on the neutrino
flux from eV.Comment: 26 pages, 15 figures. Since first revision, added section on
systematic uncertainties, updated limits and uncertainty band with
improvements to simulation, added appendix describing ray tracing algorithm.
Final revision includes a section on cosmic ray backgrounds. Published in
Astropart. Phys.
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV
energies raises the question of which astrophysical sources generate this
signal. One class of extragalactic sources which may produce such high-energy
neutrinos are blazars. We present a likelihood analysis searching for
cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue
(2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the
detection of individual sources. In contrast to previous searches with IceCube,
the populations investigated contain up to hundreds of sources, the largest one
being the entire blazar sample in the 2LAC catalogue. No significant excess is
observed and upper limits for the cumulative flux from these populations are
obtained. These constrain the maximum contribution of the 2LAC blazars to the
observed astrophysical neutrino flux to be or less between around 10
TeV and 2 PeV, assuming equipartition of flavours at Earth and a single
power-law spectrum with a spectral index of . We can still exclude that
the 2LAC blazars (and sub-populations) emit more than of the observed
neutrinos up to a spectral index as hard as in the same energy range.
Our result takes into account that the neutrino source count distribution is
unknown, and it does not assume strict proportionality of the neutrino flux to
the measured 2LAC -ray signal for each source. Additionally, we
constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data
A search for high-energy neutrinos interacting within the IceCube detector
between 2010 and 2012 provided the first evidence for a high-energy neutrino
flux of extraterrestrial origin. Results from an analysis using the same
methods with a third year (2012-2013) of data from the complete IceCube
detector are consistent with the previously reported astrophysical flux in the
100 TeV - PeV range at the level of per flavor and reject a
purely atmospheric explanation for the combined 3-year data at .
The data are consistent with expectations for equal fluxes of all three
neutrino flavors and with isotropic arrival directions, suggesting either
numerous or spatially extended sources. The three-year dataset, with a livetime
of 988 days, contains a total of 37 neutrino candidate events with deposited
energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy
neutrino interaction ever observed.Comment: 8 pages, 5 figures. Accepted by PRL. The event catalog, event
displays, and other data tables are included after the final page of the
article. Changed from the initial submission to reflect referee comments,
expanding the section on atmospheric backgrounds, and fixes offsets of up to
0.9 seconds in reported event times. Address correspondence to: J. Feintzeig,
C. Kopper, N. Whitehor
Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube
We present constraints derived from a search of four years of IceCube data
for a prompt neutrino flux from gamma-ray bursts (GRBs). A single
low-significance neutrino, compatible with the atmospheric neutrino background,
was found in coincidence with one of the 506 observed bursts. Although GRBs
have been proposed as candidate sources for ultra-high energy cosmic rays, our
limits on the neutrino flux disfavor much of the parameter space for the latest
models. We also find that no more than of the recently observed
astrophysical neutrino flux consists of prompt emission from GRBs that are
potentially observable by existing satellites.Comment: 15 pages, 3 figure
- …
