81,087 research outputs found

    Waveform simulator synthesizes complex functions

    Get PDF
    Multichannel apparatus produces or simulates a complex curve which can be viewed on an oscilloscope display surface and can be adjusted to match an original complex experimentally produced curve

    Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy

    Full text link
    The hidden photon model is one of the simplest models which can explain the anomaly of the muon anomalous magnetic moment (g-2). The experimental constraints are studied in detail, which come from the electron g-2 and the hydrogen transition frequencies. The input parameters are set carefully in order to take dark photon contributions into account and to prevent the analysis from being self-inconsistent. It is shown that the new analysis provides a constraint severer by more than one order of magnitude than the previous result.Comment: 18 pages, 2 figures, 1 table. v2: minor correction

    Some extensions of the Kuhn-Tucker results in concave programming

    Get PDF
    Some extensions of Kuhn-Tucker results in concave programmin

    Luttinger liquid physics from infinite-system DMRG

    Full text link
    We study one-dimensional spinless fermions at zero and finite temperature T using the density matrix renormalization group. We consider nearest as well as next-nearest neighbor interactions; the latter render the system inaccessible by a Bethe ansatz treatment. Using an infinite-system alogrithm we demonstrate the emergence of Luttinger liquid physics at low energies for a variety of static correlation functions as well as for thermodynamic properties. The characteristic power law suppression of the momentum distribution n(k) function at T=0 can be directly observed over several orders of magnitude. At finite temperature, we show that n(k) obeys a scaling relation. The Luttinger liquid parameter and the renormalized Fermi velocity can be extracted from the density response function, the specific heat, and/or the susceptibility without the need to carry out any finite-size analysis. We illustrate that the energy scale below which Luttinger liquid power laws manifest vanishes as the half-filled system is driven into a gapped phase by large interactions

    Approaching Many-Body Localization from Disordered Luttinger Liquids via the Functional Renormalization Group

    Get PDF
    We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 10410^4 samples for lattices as large as 10510^{5} sites. We identify regimes in which non-ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization

    Waveform simulator Patent

    Get PDF
    Sign wave generation simulator for variable amplitude, frequency, damping, and phase pulses for oscilloscope displa

    Reducing the numerical effort of finite-temperature density matrix renormalization group transport calculations

    Full text link
    Finite-temperature transport properties of one-dimensional systems can be studied using the time dependent density matrix renormalization group via the introduction of auxiliary degrees of freedom which purify the thermal statistical operator. We demonstrate how the numerical effort of such calculations is reduced when the physical time evolution is augmented by an additional time evolution within the auxiliary Hilbert space. Specifically, we explore a variety of integrable and non-integrable, gapless and gapped models at temperatures ranging from T=infty down to T/bandwidth=0.05 and study both (i) linear response where (heat and charge) transport coefficients are determined by the current-current correlation function and (ii) non-equilibrium driven by arbitrary large temperature gradients. The modified DMRG algorithm removes an 'artificial' build-up of entanglement between the auxiliary and physical degrees of freedom. Thus, longer time scales can be reached

    Finite temperature dynamical DMRG and the Drude weight of spin-1/2 chains

    Full text link
    We propose an easily implemented approach to study time-dependent correlation functions of one dimensional systems at finite temperature T using the density matrix renormalization group. The entanglement growth inherent to any time-dependent calculation is significantly reduced if the auxiliary degrees of freedom which purify the statistical operator are time evolved with the physical Hamiltonian but reversed time. We exploit this to investigate the long time behavior of current correlation functions of the XXZ spin-1/2 Heisenberg chain. This allows a direct extraction of the Drude weight D at intermediate to large T. We find that D is nonzero -- and thus transport is dissipationless -- everywhere in the gapless phase. At low temperatures we establish an upper bound to D by comparing with bosonization
    corecore