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Approaching Many-Body Localization from Disordered Luttinger Liquids
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We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled
adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as
well as matrix product state techniques, which serve as an accurate benchmark for small systems.
Using the FRG, we compute the length- and temperature-dependence of the conductance averaged
over 104 samples for lattices as large as 105 sites. We identify regimes in which non-ohmic power
law behavior can be observed and demonstrate that the corresponding exponents can be understood
by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In presence
of both disorder and isolated impurities, the conductance has a universal single-parameter scaling
form. This lays the groundwork for an application of the functional renormalization group to the
realm of many-body localization.

I. INTRODUCTION

It has been known since Anderson’s work in 1958 that
disorder can localize the eigenstates of a non-interacting
system.1 This single-particle localization physics is now
well understood theoretically and was observed experi-
mentally (for reviews see Refs. 2–4). In one or two spatial
dimensions, an arbitrarily small amount of disorder will
localize any eigenstate in the spectrum, but in 3d a so-
called mobility edge can exist which separates localized
states at the lower end of the spectrum from extended
states at high energies. The transition, which can, e.g.,
be triggered by varying the disorder strength, is the so-
called Anderson transition.

The notion of localization heavily relies on a single-
particle picture. One might generally expect that upon
adding interactions (i.e., collisions), every state gets delo-
calized. However, in 2006, Basko, Aleiner, and Altshuler
suggested5 that the localized phase can exist even in pres-
ence of interactions and that a finite temperature phase
transition can occur between phases with zero and finite
conductivity. This phase transition is not a thermody-
namic (equilibrium) transition but a dynamical quantum
phase transition which takes place on the level of the
many-body eigenstates and is beyond standard Mermin-
Wagner arguments. For one-dimensional lattice systems,
the stability of localized states towards adding interac-
tions – i.e., the existence of a ‘many-body localized’ phase
– has subsequently been established fairly convincingly
by a number of numerical6–12 and analytical13–15 stud-
ies. Moreover, there is evidence that a transition into a
delocalized phase occurs if the ratio between the interac-
tion and the disorder strength is increased.9,11,12 Physical
properties have been investigated partially.16–21

To date, the world of many-body localization (MBL)
has primarily been explored numerically by exact diago-
nalization, because many more advanced tools have dif-
ficulty in resolving excited-state properties and trans-
port. Techniques such as density matrix renormaliza-
tion group22 often increase the accessible system size

only slightly. In order to deepen our understanding of
MBL physics, it would be desirable to employ different
methods which are complementary in their strengths and
shortcomings. In this paper, we propose the functional
renormalization group (FRG),23 which formulates an a
priori exact RG flow on the level of Green functions, as
one such method. The FRG is capable of studying large
systems but is approximate since in practice, the infinite
hierarchy of FRG equations has to be truncated. This
raises the question of how well FRG calculations describe
transport in systems with both interactions and disorder.
It is one goal of our work to investigate this issue.

In the realm of MBL, the starting point to under-
stand the interplay of disorder and correlations is the
conventional (non-interacting) Anderson insulator. In
one dimension, however, this problem was first tackled
in the opposite limit of weak disorder being added to
a clean correlated system. In absence of disorder, in-
teracting 1d systems generically feature low-energy ex-
citations which are not fermionic quasiparticles but col-
lective (bosonic) modes; as a consequence, their correla-
tion functions exhibit anomalous power laws in space and
time with interaction-dependent exponents.24–26 This
so-called Luttinger liquid (LL) physics is often de-
scribed using the exactly-solvable Tomonaga-Luttinger
(TL) model,27,28 which is then argued to be the fixed
point model governing the physics of a large class of 1d
systems at low energies.29

The physics of Luttinger liquids in presence of isolated
impurities30–32 or weak disorder33–38 was studied exten-
sively using field-theoretical versions of the TL model.
Power law behavior of physical quantities can be under-
stood, e.g., from scaling dimensions computed perturba-
tively around the Luttinger liquid fixed point. However,
important questions remained: (1) Can one justify some
of the approximations (e.g., about the way disorder is
treated) made in these calculations by employing a dif-
ferent methodology – i.e., by making different approx-
imations? (2) Can one verify the power laws directly
for a microscopic lattice without having to resort to the
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usual arguments necessary to show that the field the-
ory indeed describes its low-energy physics? (3) What
is the temperature- or length scale (such as the localiza-
tion length) below/above which these power laws can be
observed for a given model? (4) What is the physics on
all scales? These questions were addressed in details in
the case of isolated impurities (see, e.g., the discussion in
Refs. 39–42) but in comparison only sparsely in presence
of disorder.43–51

We propose the functional renormalization group
(FRG)23,52–54 as an alternative method to study trans-
port in interacting, disordered systems. The key draw-
back of the FRG is that in practice its flow equation hi-
erarchy needs to be truncated via an expansion w.r.t. the
two-particle interaction on the right-hand side. Hence, it
is imperative to benchmark the capabilities of low-order
approximations; we resort to the density matrix renor-
malization group (DMRG), which yields accurate results
but is limited to small systems, as a frame of reference.
On the upside, (a) the FRG flow incorporates single-
particle disorder exactly, makes no assumptions about
the existence or absence of intermediate fixed points be-
tween high and low energies, and can often be continued
to zero cutoff, (b) the FRG can be used on the Matsubara
axis (equilibrium) or in real-time Keldysh space,55,56 and
it is not a low-entanglement approximation, (c) one can
treat both open and close systems that are generically
much larger than those accessible via exact diagonaliza-
tion, and (d) one can describe the physics on all scales.

We start by analyzing a size-L lattice of spinless
fermions with repulsive interactions U in presence of
weak disorder η ≪ 1. The field-theoretical studies of
disordered Luttinger liquids predict power laws whose ex-
ponents contain the interaction U to linear order; hence,
a first-order FRG approximation is a reasonable starting
point to study the physics in this limit. We adiabati-
cally couple the system to reservoirs and compute the
length- and temperature-dependence of the conductance
on all scales. First, the FRG results are compared with
DMRG data for lattices of O(10) sites. For larger L,
we observe non-ohmic power laws and eventually expo-
nential decays. This is consistent with the system being
localized. The interaction- and disorder-dependence of
the localization length is documented. We demonstrate
that in presence of both isolated impurities V as well as
weak disorder, the conductance G(L) shows a crossover
between two power laws, and its values for different L,
V , and η can be collapsed on a single universal curve.

We find that even for quite strong interactions our
FRG calculations are in very good agreement with the
DMRG data as well as with the theoretical predictions
based on disordered Luttinger liquids. Many-body local-
ization with zero conductivity at nonzero temperature
is expected to appear as a conductance that, at fixed
temperature, decreases exponentially with the length of
the disordered region – similarly to the zero-temperature
behavior of a standard localized system, albeit with a
possibly different localization length. At intermediate

disorder strengths, there is a regime at nonzero tem-
perature where the exponential scaling of conductance
persists consistent with MBL – i.e., FRG can effectively
give an upper bound on the conductivity in the ther-
modynamic limit, while not proving it is strictly zero.
We find evidence for a crossover into a metallic phase
for attractive interactions. A more systematic study of
the limit of strong disorder and many-body localization,
which is a strong-coupling phenomenon, requires a full
second-order truncation scheme. Our present work lays
the groundwork for this calculation (which itself is be-
yond the scope of this paper) and for a description of
the full crossover between the limits of weak and strong
disorder. While it is not garantueed that a second-order
scheme would succeed in describing MBL quantitatively,
one would expect that the MBL phase can be detected
and that some of its features can be analyzed qualita-
tively from the second-order flow to strong coupling.

II. MODEL

We consider one-dimensional spinless fermions living
on a lattice of size L̃ = L+ 2Lc:

HLL =

L̃−1
∑

l=1

(

− tlc
†
l cl+1 + h.c. + Vlnl + Ulñlñl+1

)

, (1)

where nl = c†l cl , ñl = nl−1/2, and tl denote the nearest-
neighbor hopping amplitudes. We will mainly set tl = t
and model disorder via random potentials Vl. In order to
adiabatically connect the system to reservoirs, we switch
on the Coulomb interaction smoothly over a few lattice
sites Lc ≪ L (we will comment on the values Lc and s
below):

Ul≤L̃/2 = U

{
[

π
2
+ arctan

[

s(l − 1− Lc/2)
]

]

l ≤ Lc

1 l > Lc ,

(2)
and UL̃−l = Ul. Finally, the coupling to left (L) and right
(R) Fermi liquid leads is described by

Hlead =
∑

k

[

ǫkf
†
L,kfL,k + ǫkf

†
R,kfR,k

+τ
(

f †
L,kc1 + f †

R,kcL̃ + h.c.
)]

.

(3)

Prominent choices for the dispersion ǫk are i) tight-
binding leads governed by the Hamiltonian of Eq. (1)
with Vl = Ul = 0, and ii) the wide-band limit of struc-
tureless reservoirs described by a single hybridization en-
ergy Γ = πρlead(0)τ

2, where ρlead(ω) is the local density
of states at the chemical potential. We have checked ex-
plicitly that both yield the same results in the low-energy
limit.
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FIG. 1. (Color online) Schematic representation of the flow
equations for the self-energy and the effective two-particle
scattering (a n-particle vertex has 2n external legs).

III. METHOD

A. Functional Renormalization Group

The functional renormalization group is one implemen-
tation of Wilson’s general RG idea for interacting many-
particle systems.23,54 It starts with introducing an energy
cutoff Λ into the non-interacting Matsubara Green func-
tion G0 of the system under consideration (note that the
method can also be set up on the Keldysh axis). We
choose a multiplicative infrared cutoff in Matsubara fre-
quency space, which at zero temperature takes the simple
form Θ(|iω| − Λ); the finite-T analogue can be found in
Ref. 42. We consider the flow of many-particle vertex
functions, the lowest of which are the self-energy and the
effective two-particle scattering. By virtue of the replace-
ment

G0(iω) → G0,Λ(iω) = Θ(|iω| − Λ)G0(iω) , (4)

every such vertex function acquires a Λ-dependence. If
one takes the derivative with respect to Λ (which can,
e.g., be accomplished using generating functionals), one
obtains an infinite hierarchy of flow equations that can
be represented diagrammatically (see Fig. 1); a detailed
derivation can be found in Ref. 23. Subsequent inte-
gration from Λ = ∞ down to the cutoff-free system
Λ = 0 leads to an in principle exact solution of the
many-particle problem. In practice, the infinite hierar-
chy needs to be truncated, rendering the FRG an ap-
proximate method. The most simple truncation scheme
is to neglect the flow of the two-particle vertex by setting
it to its initial value (the bare Coulomb interaction U)
in the self-energy flow equation. This approximation is
strictly correct only to leading order in U but contains
an infinite resummation of Feynman diagramms (since
the self-energy feeds back into its own flow). Similarly,
the second-order truncation scheme is obtained by set-
ting the three-particle vertex to its initial value (zero),
which yields a closed set of flow equations for both the
two-particle vertex and the self-energy.
In this paper, we consider the flow of the self-energy

and partially incorporate second-order contributions by
parametrizing the two-particle vertex as purely local and
energy-independent, i.e., as effective on-site interactions
UΛ
l .

57 It turns out that accounting for the flow of UΛ
l

renders the higher-order contributions to Luttinger liq-
uid exponents associated with isolated impurities more

accurate (the exponents associated with disorder do not
improve significantly). We emphasize that this is a purely
pragmatic approach - the resulting approximation is still
exact only to first order. The flow of the self-energy can
by can be expressed in terms of effective hoppings tΛl and
on-site energies V Λ

l ; the flow equations explicitly read

∂λV
Λ
l = −

1

π
Re

[

UΛ
l−1G̃

Λ
l−1,l−1(iω

Λ
n ) + UΛ

l G̃
Λ
l+1,l+1(iω

Λ
n )

]

∂λt
Λ
l = −

1

π
Re

[

UΛ
l G̃

Λ
l,l+1(iω

Λ
n )

]

∂λU
Λ
l =

UΛ
l

π

{

2UΛ
l

[

Re G̃Λ
l,l(iω

Λ
n )Re G̃

Λ
l+1,l+1(iω

Λ
n )

− Re G̃Λ
l,l+1(iω

Λ
n )Re G̃

Λ
l,l+1(iω

Λ
n )

]

− UΛ
l−1Re G̃

Λ
l−1,l(iω

Λ
n )

2 − UΛ
l+1Re G̃

Λ
l,l+1(iω

Λ
n )

2
}

.

(5)

The initial conditions are given by V Λ→∞
l = Vl, t

Λ→∞
l =

tl, and UΛ→∞
l = Ul. Boundary conditions are formally

imposed by setting UΛ
−1 = UΛ

L̃
= 0. G̃Λ(iω) denotes

the flowing single-particle Matsubara Green function,
and ωΛ

n is the Matsubara frequency closest to Λ. The
non-interacting leads can be ‘projected out’ analytically
via equation-of-motion techniques, and the calculation of
G̃Λ(iω) then reduces to the inversion of a L̃ × L̃ matrix
defined by

[

G̃Λ(iω)−1
]

l,l
= iω − V Λ

l − τ2glead(iω)(δl,1 + δl,L̃)
[

G̃Λ(iω)−1
]

l,l+1
=

[

G̃Λ(iω)−1
]

l+1,l
= tΛl ,

(6)

where glead(iω) is the local Green function of an iso-
lated lead [which in the wide-band limit is determined
by τ2glead(iω) = −iΓ sgn(ω)]. Due to the tri-diagonal
structure, this inversion can be carried out with a com-
putational effort scaling linearly with L̃.41 The flow equa-
tions can be integrated using standard Runge-Kutta rou-
tines. Finally, one obtains the conductance (in units of
e2/h = 1) from

G(L, T ) = −4π2τ4
∫

dω
[

f ′(ω)ρlead(ω)
2

×
∣

∣G̃Λ=0

1,L̃
(iω → ω + i0)

∣

∣

2
]

,

(7)

where ρlead(ω) = −Im glead(iω → ω + i0)/π, and f(ω) =
1/[1+exp(ω/T )] is the Fermi function. At finite T , there
are additional vertex correction to G, which, however,
vanish within our truncation scheme.

B. Density Matrix Renormalization Group

The density matrix renormalization group22,58 is an al-
gorithm to variationally compute ground states or to sim-
ulate the real time evolution59–64 in one-dimensional sys-
tems. It can be implemented conveniently using matrix
product states.65–68 Since the DMRG is a fairly standard
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FIG. 2. (Color online) Zero-temperature conductance of
a short quantum wire of L = 8 sites featuring nearest-
neighbor interactions U , randomly distributed hoppings tl,
and vanishing on-site potentials Vl = 0. The system
is contacted abruptly (Lc = 0) to tight-binding leads.
We compare FRG and DMRG results for the clean case
tl = t as well as for the disorder realization t1...8/t −
1 = {−0.231,−0.153, 0.093,−0.253, 0.090, 0.167, 0.047}. Er-
ror bars for the DMRG data are shown if they are larger than
the symbol size (see the main text for details).

tool, we only describe briefly of how the conductance is
computed;69 more details can be found, e.g., in Ref. 62.
Within the DMRG, we model both the left and right

reservoirs in real space as non-interacting tight-binding
chains of size Lres = 200. Their hopping amplitudes tresl
are chosen constant tresl = tres close to the contacts with
the wire HLL but are decreased exponentially towards
the ends in order to reduce finite-size effects. We first
apply a bias voltage ±Vb/2 to the left and right chain and
determine the ground state of the whole system (limit-
ing ourselves to zero temperature for the DMRG results).
Thereafter, we set Vb = 0 and calculate the real-time evo-
lution of the charge current. We extract the steady-state
value for 12 values of Vb < tres and obtain the conduc-
tance from linear fits.
The computational effort of DMRG calculations scales

with the third power of the dimension of the matrix prod-
uct state used to approximate a given 1d state, which in
turn scales exponentially with the amount of encoded
entanglement. Generally speaking, the longer the size of
the interacting wire, the more entanglement builds up in
the steady state. This limits the DMRG calculations to
small values of L̃. The error is determined by the finite
size of the leads, uncertainties in the extracted steady-
state current due to oscillations, and finite-entanglement
errors (truncation of the matrix product state). We run
the DMRG calculation for various parameters (system
size, discard weight) in order to roughly estimate the er-
ror. For our purposes, it is sufficient that the DMRG
data is accurate to a few percent, and we can refrain from
a precise analysis of, e.g., finite-time oscillations as dis-
cussed in Ref. 62. Error bars are shown in case that they
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system size L
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e 
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η=5*10-3, N=1
η=5*10-3, N=104

η=5*10-2, N=104
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L

10-5
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10-3

10-2

10-1

1
−

G

~Lloc(a)

U/t=-2, η=0.3

FIG. 3. (Color online) FRG data for the zero-temperature
conductance through large wires of up to L = 104 sites with
U/t = 1, uniform hoppings tl = t, and random on-site dis-
order potentials of strength η. The latter are averaged over
N different configurations. The system is adiabatically con-
nected to Fermi liquid leads; we take the wide-band limit and
choose the hybridization as Γ = t. Note that only the data
for η = 0 as well as for η = 0.005, N = 104 is shown in the
inset. The additional curve for attractive U will be discussed
in Sec. V.

are larger than the symbol size; we also emphasize that
the FRG calculation is by construction exact at U = 0,
implying that this point serves as a benchmark for the
DMRG result (see Fig. 2).

IV. RESULTS

We first compare our approximate FRG data with the
DMRG reference for small systems at zero temperature.
Disorder is modelled via random hopping amplitudes in
the wire, tl/t ∈ [1 − η, 1 + η], which renders the DMRG
calculations simpler since one can trivially stay at half
filling.62 We set the on-site potentials Vl to zero, con-
sider non-adiabatic contacts (Lc = 0), and choose equal
hopping strengths t = τ = tres in the tight-binding leads
and in the wire. Results are shown in Fig. 2 both for the
clean system, where the conductance deviates from the
unitary values merely due to the abruptness of the con-
tacts, as well as for one disorder realization with η = 0.3.
Even though the FRG approximation is a priori justified
only to leading order, it agrees well with the DMRG data
up to large interactions U/t ∼ 1. We again point out that
the FRG calculation is exact at U = 0 so that this point
in turn serves as a non-trivial benchmark for the DMRG
result.
We can now use the FRG to study systems as large as

O(105) sites. In the remainder of the paper, we employ
uniform hoppings tl = t and introduce disorder via ran-
dom on-site potentials drawn from a uniform distribution

Vl/t ∈ [−η, η] . (8)
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FIG. 4. (Color online) Localization length Lloc as a function
of the disorder strength η for various interactions U . We de-
fined Lloc as the length scale where the averaged conductance
shown in Fig. 3 is suppressed to G(L = Lloc) = 0.99 [main
panel], or G(L = Lloc) = 0.75 [inset (a)]. The solid lines show
power-law fits to Lloc ∼ η−α for Lloc & 50. Inset (b): Expo-
nent α in comparison with the prediction α = 2/(3− 2K).

Furthermore, we choose structureless wide-band limit
leads with a hybridization strength of Γ = t.
Fig. 3 shows FRG results for the length-dependence

of the conductance. For clean systems, G(L) is inde-
pendent of L and of unitary value if the contacts to the
baths are perfectly adiabatic.70–72 For our purposes, it
is sufficient to choose Lc = 22, s = 2 in Eq. (2); this
yields 1 − G(L = 10000) ≈ 3 × 10−8 at U/t = 0.2 and
1−G(L = 10000) ≈ 3 × 10−5 at U/t = 1 [see Fig. 3(a)].
In presence of a finite η > 0, G(L) is a non-monotonous
curve for any given choice of the potentials Vl, reflective
of randomly distributed transport resonances within the
wire. After numerically averaging over N ∼ 104 different
disorder realizations, we obtain a smooth G(L) which de-
cays monotonously for repulsive interactions (for attrac-
tive interactions see Sec. V). We will now analyze this
quantitatively. We will discard all data for which the de-
viations from the unitary conductance are not at least
one order of magnitude larger than the above-mentioned
deviations attributed to imperfect contacts.

A. Localization length

We define the localization length Lloc as the scale
on which the zero-temperature conductance starts to
deviate from the unitary value [see Fig. (3(a)]. Re-
sults are shown in Fig. 4, where we have used the pre-
cise definition G(Lloc) = 0.99 in the main panel and
G(Lloc) = 0.75 in inset (a). The localization length
decreases monotonously with the strength η of the dis-
order. For η ∼ 0.1, Lloc becomes of the order of a
few lattice sites. In the limit η → 0, we observe a
power law, Lloc ∼ η−α, which is consistent with previ-

10-2 10-1 100 101

L / Lloc
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10-2

10-1

1

1 
− 

G
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G

0 1500
L

10-2

10-1

1

G

(a) η=0.1

(b) L=12000

Lβ=1.54

T=0

η=5*10-4

η=10-2

η=10-3

η=2*10-3

η=5*10-3

T−γ

η=10-4 η=2*10-4 η=5*10-4

η=10-3 η=2*10-3 η=5*10-3

η=10-2 η=2*10-2 η=5*10-2

T/t=0.1

T/t=0.03

FIG. 5. (Color online) FRG results for the length- and
temperature-dependence of the conductance. Main panel:
G(L) at T = 0, U/t = 1, 200 < L < 10000, and various η.
The data was averaged over N = 104 samples. For L ≪ Lloc,
we observe power-law behavior 1−G ∼ Lβ with an exponent
β ≈ 3 − 2K (dashed line). Inset (a): G(L) on a log-linear
scale for fixed η = 0.1 and different temperatures. The data
at T = 0 and T > 0 was averaged over N = 104 and N = 103

samples, respectively. Inset (b): G(T ) for fixed L = 12000,
various η, and averaged over N = 102 samples. At interme-
diate T , we again observe a power law 1 − G ∼ T−γ , where
γ ≈ β − 1.

ous works.37,38,43 For spinless fermions, an RG analysis
within the Tomonaga-Luttinger model25 predicts an ex-
ponent α = 2/(3− 2K), where K is the Luttinger liquid
parameter, which in our case is known analytically from
Bethe ansatz: K = π/{2 arccos[−U/(2t)]}.73 Despite the
fact that our FRG data is strictly correct only to leading
order in the interaction, it reproduces this result even for
large U/t = 1.5 [see Fig. 4(b)].

B. Length and temperature dependence

We now analyze the functional form of the disorder-
averaged conductance in more detail. We start at zero
temperature. If L is of the order of a few lattice sites,
G(L) decays in non-universal way. For L ≫ 1, however,
the data for different values of η can be collapsed onto a
single curve if L is rescaled w.r.t. the localization length
– the conductance has a universal form G(L/Lloc). This
is illustrated in Fig. 5, where we have used Lloc ∼ η−α.
For lengths scales 1 ≪ L ≪ Lloc, G decays with a

power law, 1 − G(L) ∼ Lβ. An analytical guess for the
exponent β can be obtained from the low-energy analysis
of a spinfull, homogeneous Luttinger liquid,35 suggesting
β = 3 − 2K in our case. We find β ≈ 1.28 at U/t = 0.5
and β ≈ 1.54 at U/t = 1 (Fig. 5), which agrees de-
cently with 3 − 2K ≈ 1.277, 1.5. On larger length scales
L ≫ Lloc, the conductance G(L) shows an exponential
decay, which is still observable at small, finite tempera-
tures [see Fig. 5(a)]. This is consistent with the system
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FIG. 6. (Color online) Scaling of the zero-temperature con-
ductance in presence of on-site disorder η as well as a single
impurity V at U/t = 0.5 calculated via the FRG. One ob-
serves a crossover between two different power laws; the data
for all V and η can be collapsed on a single curve. The raw
data was obtained for lengths scales 200 < L < 50000 and
averaged over N = 103 samples.

being localized for repulsive interactions at small η (see
also the discussion in Sec. V).34–38,43

Finally, we study the behavior of G if the tempera-
ture is increased for a fixed value of the system size.
Results are shown in Fig. 5(b). While at small T , the
conductance is exponentially suppressed, we observe a
power-law increase 1−G(T ) ∼ T−γ at intermediate tem-
peratures (larger than the ‘localization temperature’ but
smaller than the bandwidth). The exponent is in good
agreement with the analytic prediction25 γ = 2− 2K ob-
tained for a spinless LL (we find γ ≈ 0.29, 2− 2K ≈ 0.28
at U/t = 0.5 and γ ≈ 0.56, 2− 2K = 0.5 at U/t = 1).

C. Disorder and isolated impurities

One of the hallmarks of Luttinger liquid physics is the
influence of isolated impurities.30–32,35,38 An arbitrarily
small barrier

Himp = V nL̃/2 (9)

effectively cuts a LL in half at low energies, and the
conductance vanishes with a power law G(E → 0) ∼
E2/K−2, where E is an energy scale such as temper-
ature or inverse length. At larger E and small V , G
approaches the value G0 of the impurity-free Luttinger
liquid via G0 − G(E) ∼ E2−2K . The crossover between
those two limits of ‘weak’ and ‘strong’ impurities follows a
universal scaling formG(E/Eimp), where Eimp(V ) is a V -
dependent, non-universal scale. This whole picture was
first established for homogeneous systems using the local
Sine-Gordon model, e.g. by means of perturbative RG
or the Bethe ansatz.32,74,76 Subsequently, the FRG was

used to extensively study impurities in microscopic lat-
tice models,39 illustrating that the conductance in pres-
ence of leads features the same power laws and single-
parameter scaling if and only if the contacts to the leads
are adiabatic.40–42

If the system features both weak impurities V as well
as weak disorder η, one expects a crossover between
the respective power laws 1 − G(L) ∼ Lδ=2−2K and
1 − G(L) ∼ Lβ=3−2K . However, it is a priori unclear
whether or not the data for different L, V , and η can be
collapsed on a universal curve. In order to test this, we
make a single-parameter scaling ansatz

1−G(L) =

(

L

Limp

)δ

f

[

(L/Lloc)
β

(L/Limp)
δ

]

, (10)

where f should satisfy f(x → 0) ∼ 1 and f(x → ∞) ∼ x.
Lloc is the localization length, which for the parameters
considered is simply taken as Lloc(η) ∼ η−α, and we de-
termine Limp(V ) as the length scale needed to collapse
the data at η = 0 but various V onto a single curve. Re-
sults are shown in Fig. 6, indicating that the conductance
indeed has a scaling form.

V. OUTLOOK

We have studied the combined effect of disorder and
correlations in a system of 1d lattice fermions using a
leading-order functional renormalization group scheme.
We computed the conductance in presence of adiabatic
coupling to leads on all length and temperature scales. At
low energies and for weak disorder, one observes several
Luttinger liquid power laws whose exponents are in good
agreement with predictions obtained via field theory. The
interplay of isolated impurities and disorder is governed
by a universal single parameter scaling form.
In this paper we focused on the limit of weak disorder

and repulsive interactions where the system is believed
to be localized. Prior works suggest that a crossover into
a metallic phase occurs at K = 3/2, which corresponds
to attractive U/t = −1 in our units. As illustrated by
Fig. 3(a), the conductance no longer decays to zero at
U/t = −2 even for large values of η, and one might
be tempted to conclude that our FRG scheme captures
the metal-to-insulator transition. Moreover, the persis-
tence of exponentially-decaying G(L) at finite temper-
ature for repulsive interactions and intermediate disor-
der strengths is indicative of the existence of a many-
body localized phase. However, caution is in order: For
the weak-disorder limit addressed in this paper, previous
works suggest that the interaction gives rise to power
laws whose exponents are of first order, and employing
a leading-order FRG scheme is thus reasonable. Many-
body localization, however, is a strong-correlation phe-
nomenon about which it is not known whether or not
it can be captured by leading-order perturbative RG.
Hence, it is imperative to implement a true second-order
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FRG approximation as a frame of reference (which, e.g.,
accounts for the energy-dependence of the two-particle
vertex). This is straightforward for one-dimensional, in-
homogeneous systems (see, e.g., Ref. 77) and subject
of ongoing work. It is certainly not garantueed that a
second-order scheme would succeed in describing MBL
quantitatively, but one would expect that the MBL phase

can be detected and that some of its features can be an-
alyzed qualitatively from the second-order flow towards
strong coupling.
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