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Some Extensions of the Kuhn-Tucker Results
in Concave Programming!

(Revised August 14, 1967)

JAMES C. MOORE

I. INTRODUCTION, NOTATION

In their seminal paper [11], Kuhn and Tucker proved an equivalence be-
tween the existence of‘a saddle point and the maximization of a concave
function f subject to x20, and g{x)20, where g is a vector of concave
functions.2 Uzawa later provided a somewhat simpler proof of this result
[14], as well as extending the basic theorem to the case where fhe function
f and the functions g; are not necessarily differentiable nor even continuous.3
In a fundamental article in the same volume, Hurwicz [8] generalized the Kuhn-
Tucker results to the case where the functions involved map a (real) 1fnear
space into linear topological spaces; as well as providing interesting and
important extensions of the saddle point notion to cases involving more
general orderings.4

The purpose of this paper is two-fold:

1.) We shall provide a fairly systematic treatment of the theory of
the constrained maximization of nondifferentiable vector-va1ued.functions
defined on a finite-dimensional Euclidean space (Sec. II). In some respects,
much of this portion of the paper is not new. In fact, some ¢f the theorems
presented are special cases of Professor Hurwicz's results for the non-
differentiable case. However, where the results presented here are special
cases of Professor Hurwicz's work, we have genera11y been able to take

advantage of the more elementary spaces with which we are concerned here to
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develop somewhat simplier proofs. Moreover, some of the results presented
in Section II are at least mild generalizations of the heretofore published
work on the constrained maximization of nondifferentiable vector-valued
functions.

2.) In Section III, we undertake a systematic exploration of the
nature of the constraint qualifications which have been used in this type
of maximization problem. We there examine both the geometric role the
constraint qualification plays in the problem, and the relationships
among the various constraint qualifications which have been used.

In order to more clearly define the kind of problem with which we shall
be dealing, suppose we first introduce the following nétation.

Let En denote n-dimensional Euclidean space. We shall use x, y, z,
etc., to denote points in this space, which we think of (where the dis-
tinction is important) as column vectors. If x is the vecfor with
elements X1s Xps + o o5 X5 WE write
X >.

25+ s X

We shall denote the set of unit (Cartesian) ccordinate vectors in En by

X = <Xy, X

{e', . .., e", i.e.,
1_
e = <Gi], 8

.s 6.n> for i=1, . . ., n;

i2> i
where 61j is the Kronecker delta.
We shall use what seems to be a standard notation for vector inequalities:
x>y iff x;2y; for =1, .. ., n;
x>y iff x>y and x#y;
x>>y iff Xi>Y5 for i=1, . . ., n.

. e . . . +
Using these definitions, we define the non-negative orthant in En’ E_, by:

n
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EY = [xeE | x20 33
n ‘"~ n' "—n°
where en denotes the origin in En' In Tine with this notation, E] will
. + .
denote the real line, and Ei the set of non-negative real numbers.
If x, yeEn, we shall denote the:

1.) INNER PRODUCT OF x AND y by x-y,

an
X0y = By XYy
2.) NORM OF x by ||x||, i.e.,
x| = x-x.

3.) DISTANCE BETWEEN x AND y (the metric on E,) by
2
) ]]/2

_ _ n
d(x, y) = HX".VH = [Z'i-‘-‘](x'i_‘y'i
4.) SPHERICAL NEIGHBORHOOD OF x WITH RADIUS €>0 by

N(x, €) = {yEEn| d(x, ¥)<el}.
Where the radius is unimportant, we use N(x) to denote an arbitrary
(non-empty) spherical neighborhood of x.
If XéEn, we denote the closure of X by X, and the interior of X by
int(X), i.e.,
int(X) = {xeX| (IN(x)) N(x)eX3.
If A and B are subsets of Em and En’ respectively, we denote the Cartesian

Product of A and B by

AXB = {<a, b>€Em+n| acA, beB}.
Extending the above notation, we shall frequently partition vectors in, say,
Eqs writing, e.g., x = <x], xZ>. Where we write
1 .2
<X, X >€En+p’
we shall understand that

xleEn, XZEE .

p




We say that a set XQEP is:

1.) a CONE if (xeX and erT): AxeX.

2.) CONVEX if (x'. x°eX and Ae[0, 11): Ax +(1-A)x%ex
3.) a CONVEX COME if (x', xPeX and A, A,eEd) Axtondex;

1]

while if X_En we define:

1.) the CONJUGATE CONE OF X, denoted X*, by

X*

it

{yee | (xeX)x-y201,

2.) x* {yeEA (xeX)x-y = 0}
3.) -X

i

tyee | (-1)yex?
4.) (for YQEn):
X+Y = {z€En] (AxeX, yeY) z=x+yl.

Finally, we shall make frequent use of the following definitions.

DEFINITION 1: Let g: E - . We shall say that g is AEELNE? if g is of
the form:

g(x) = Gx+b,
where G is an nxm matrix of constants, and b is an n*] column vector of
constants.

DEFINITION 2: Let Dc_:En be convex, let g: D»Em, and let Y§Em be a convex
1

cone. We shall say that g is Y-CONCAVE ON D if for every x', xst and

e [0, 1], we have

gL +(1-0x71-Dag(x ) +(1-0) g (x*) TeY

This second definition is equivalent (for the case with which we're
dealing here) to the definition of concavity introduced by Professor Hurwicz
in [8] (p. 68). Note that if g: DE, the usual definition of concavity is

equivalent to the statement that g is ET—concave on D; while if g is an




[}

m-vector of functions, each of which is concave by the usual definition,
.ot
then g is Em—concave on D.

We now set out t
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this paper as follows:

DEFINITION 3: Let DgEm, and suppose that:
f:Din, g: D{p,
and that XeD is non-empty, Yng is a non-empty convex cone. We shall then

say that <f, g,X, Y> defines a MAXIMIZATION PROBLEM, w, and that x is a

SOLUTION of m provided that:

(1) xeX, g(x)ey,
and
(2) AXEX D g(X)eY and £(X)>F(x).°

Notice that if n=1, so that f is real-valued, we have, as a special case,
the maximization (in the usual sense) of a real-valued funétion subject to
the constraints x€X and g{x)eY. Moreover, in the very special case where
n=1, X=E;, and Y=E;; our maximization problem reduces to the much more
familiar problem of maximizing f subject to x>0 s g(x)zpp. We note also
that, since {ep} is a convex cone, the general maximization problem formu-
lated in Definition 3 includes as a special case the classical Lagrangian
problem of maximizing a real-valued function f subject to the constraint
g(x)=6 (in the case where n=1, X=D, and Y={ep})7. As a final example,
suppose we wish to maximize (in the sense of definition 3)8 some vector-
valued function f subject to xeX and

hi(x) = bi for i=1, . . ., q;
(3) hi(x);bi for i=g+l, . . ., r

hi(xlibi for i=r+l, . . ., p.
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and

-
H

{e },
+q +
Y, = Er—qx("Ep—r

Y = Y]XYZ.

Then Y, being the Cartesian Product of convex cones, is itself a convex

)s

cone; and the constraints in (3) can equivalently be expressed by the
requirement g(x)€Y.9 Hence this example is also a special case of the
type of general maximization problem formulated in Definition 3.

One further aspect of this definition deserves some discussion. The
reader will note that in Definition 3, we have not required D, the domain
of definition of the functions f and g, to coincide with Em (and in fact,
our definition and the theorems of the next section apply to the case
where D=X). The extent of the domain of definition is important in this
kind of maximization problem for at least two reasons.

First of all, the saddle point theorems'of the next section do
not require the functions f and g to be continuous. However, the necessity
theorems (Theorems 3-5 of Section II) do require f and g to be concave (in
the usual applications); and a function which is defined and concave on
an open convex set in Em is continuous on this set (see Berge [6], p. 193).
Hence if we assume D=Em, we would implicitly be assuming that f and g were

continuous.
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¢ important consideration stems from the following reasoning,
One might conjecture that if a function is defined and concave on a

is always extendible to a function which is defined
and concave over all of Em. However, in spite of the apparent plausibility
of this statement, it is incorrect; as we can easily see from the follow-
ing counterexample: let

[b if x=0

f(x) = <
U if x>0.

It is clear that f is defined and concave on E;, but it is obvious that
there is no way of extending it to a function which is defined and con-
cave over all of E].]] Hence if we have, say, a functﬁon f which is
defined and concave over the non-negative orthant in Em (e.g., a production
function), a saddle point theorem which requires the domain of definition
to be Em (and the functions f and g to be concave on this domain) is not
applicable without enough additional specifications on the nature of the
function f to guarantee that it is extendible. The formulation of our
Definition 3, which is followed in the theorems of the next section, is

applicable to this sort of situation without the additional specifications.

DEFINITION 4: Let m be the maximization problem defined by <f, g, X Y>.

We define the GENERALIZED LAGRANGIAN EXPRESSION ASSOCIATED WITH m, . s
on DXEnXEp by:
@ﬂ(x, vV, W) = v-f(x)+w-g(x).]2
In the next section, we shall be concerned with the investigation of
the relationship between the existence of the solution of a maximization

problem, m, and the existence of a Saddle Point, of one of the following

types, for ©_.
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DEFINITIONS 13 Let <f, g X, Y>define a maximization problem, 7, and let

¢ denote the Generalized Lagrangian Expression associated withm,
Then we shall say that:

5.} a point <x, v, w>eE is a GENERALIZED SADDLE POINT (GSP) for

m+n+p
o 5 OF that 2 has a GSP at <x, v, w>, if:

_ — + — . .
(4) XeX, veEn, weY*, <y, W>#8n+p,
and
(5) o (x, V, W28 (X, V, W)X & (X, V, w) for all xeX, weY*,

Extending this terminology somewhét, we shall sometimes say that@TT has
a GSP at xeX, or that a GSP exists for 9. at x, ifd<v, W>€E:XY*J<§} vV, W>
is a Generalized Saddle Point for Q- (Similar conventions will be followed
for the types of saddle points defined in the following.)

6.) a point <x, v, W>5Em+ is a GENERALIZED NON-DEGENERATE SADDLE

n+p
POINT (GNSP) for o, or that ¢ has a GNSP at X, vV, w>, if:
xeX, VéE:\{en}]4, WEY*,

and (5) holds. Equivalently, ¢_has a GNSP at <x, v, w> if o has a GSP
at <, v, wsand V%en.

is a GENERALIZED PROPER SADDLE POINT(GPSP)

7.) a point <«x, v, w>eEm+n+p

for ¢ if XeX, v>>8 , weY*,
T n

and (5) holds.

8.) a point <, WSgEm+ is a SADDLE POINT for o (in the special case

P
where n=1, i.e., f: D+E]) if o has g GNSP at <x, 1, W>€Em+]+p’ that is, if:
(6) xeX, weY*,
and

(7) f(x)+w-g(x) < F(x)+w-g(X) < f(x)+w-g(x) for all xeX, weY*.
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Note that for the special case where n=1 (i.e., where f: D»E}), the
distinction between a GNSP aﬁd a GPSP disappears (the distinction is of
some importance when n>1, however, as we shall see). Moreover, in the case
where n=1, the existence of a GNSP is logically equivalent to the exi;tence
of a Saddle Point. To see this, we first note that a Saddle Point in this
situation is a special case of a GNSP (having v=1). Movreover, if o has

a GNSP at <, v, w>eE then, as we can easily verify, ¢ has a

m+]+p;
Saddle Point at <, (1/V)w>.

IT. THE PRINCIPAL THEOREMS

The following theorém is a special case of theorem V.1, p. 86, in
Hurwicz [8]. It deals with a sufficient condition for a constrained
maximum; and, it should be noted, holds with no restrictive assumptions
(e.g., concavity) on f and g whatever. It is also perhaps worth empha-
éizing that X can be any point set in Em (even a finite point set), while
Y can be ggl;c1osed convex cone in Ep (and we may have, for instance
Y{"IE;= {9 .
THEOREM 1 (HURWICZ):
If:

1.) <, g, X, Y>defines a maximization problem, = (see Definition 3),

where Y is a closed convex cone;

2.) X, V, §>gEm+n+p is a GPSP for o5 then X is a solution of g.
PROOF (HURWICZ):

By hypothesis (2), we have

(1) xeX, V5>en, weY*,

(2) Ve f(x) e g(x) - F(X) 4w g(x) v F(X)+u-g(x) for all xeX, weY*.



From the r.h.s. of {2), we have:
(3) wg(X)<w-g(x) for all weY*.

However, since we¥*, we have whwe¥Y* for all weY* (since Y a convex cone

)

implies Y* a convex cone). Hence, from (3), we have:

wog(x) < (ww)-g(x) for all weY*,

or

(4) w-g(x)>0 for all weY*,

Therefore g(x)eY**. However, since Y is a closed convex cone, we have
(see Karlin [10], p. 403) y=Y**. Hence

(5) g(x)eY.

Moreover, it follows immediately from (1), (3), and (5), that

(6) w-g(x)=0

Suppose now that xeX and g(x)eY. Then by (1), (6), and 1.h.s. of (2),

we have:

Ve (X)SVe F(x )+ g(x )V £(X) Ha-g(X) =v- F(X).
Hence
(7) v-f(x)Sv-f(x) for all xeXDg(x)eY.

Therefore, since V5>en, (7) implies that:
BxeX with g(X)eY D F(X)>F(x),
and it follows from (1) and (5) that x is a solution of 7.

Q.E.D.

Our next theorem deals with necessary conditions for a constrained
maximum, and is a generalization of a theorem by Berge (Cf., Berge [6],

p. 227).1°

The theorem stated here is implicit in Hurwicz's treatment in
[8], although it is not stated explicitly. It is a fairly natural extension

of the approach to the classical Lagrangian prob]em.deve]oped by Bliss in [7].
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If:
1. <F, g, X, V> defines a maximization problem, m, where:
a.) X is convex,
. . +
b.) f is concave (i.e., En-concave) on X,
c.) g is Y-concave on X,
2.) xeX is a solution for m;
then

4 V€£:, weY*30 has a GSP at <X, V, w>.

The method of proof used in the following is an adaptation of that
originated by Hurwicz in [8] and Uzawa in [14]. It depends heavily on
two convex and disjoint sets, A and B, which are (in our case) subsets
of En+p’ In order to define these sets, we first define:

f%(x) = f(x), g(x)> for xeX,
(8) +
= X
‘12 En Y.
We note that h is Z-concave on X, and that Z is a convex cone {since it
is the Cartesian Product of two convex cones ).

For each xeX, define:

(9) A(x) = {aeEn+pl h(x)-acZ}.

We then define:

(10) A= facE | ExeX)aeA(x)} = L) A(x)
P xe X

= {a = <s, t>eEn+p] (HxsX)f(x)z§, g(x)—th},
and
B = {b=<z, y»eE_, | z>f(x), ye¥ }
(11) J/ n+p .,
}\= {b=<z, y>eEn+p| <z, ye[FX)+(EN{o} )] x Y},
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¢ sets A and B defined in (1

and (11) are disjoint, convex, and non-empty. Moreover, for every xcX, we

have hix)=<f{x), g{x)>eA.

PROOF OF LEMMA 1:

i.) Since en+p€Z’ it is clear that
(xeX): h(x)eA.
Since this is the case, it is obvious that if X#@, then A#@. It is also
obvious that if Y#@, then B¥@; and it is clear that B is convex, since it
is the Cartesian Product of two convex sets.
ii.) In order to prove that A is convex, suppose that
(12) a =<8, B, 3=<§, ToeA.
Then 3%, xeX 2
(13)  n(x)-aezZ,
(14) h(x)-aez.
Let Ae[0, 1]§E;, and define
(15) a(\)=Aa+(1-A)a,
(16)  x(A)=Ax+(1-1)X.
Since Z is convex, we have by (13) and (14):
(17)  ALh(R)-81+(1-X)[h(x)-&]=h(K)+(1-1)h(X)-a())eZ.
Moreover, since X is convex, and h is Z-concave on X:
(18)  h[x(A)]-[xh(x)+(1-A)h(x)TeZ.
Hence, since Z is a convex cone, we have by (17) and (18):
{h[x(X)]—[Ah(§)+(1-A)h(;)]}+{kh(§)+(1—X)h(§)~a(k)}=h[x(k)]—a(x)ez.
Therefore
a(M)eAlx(A)1C As

and we conclude that A is convex.

0

LR

)
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iii.) In order to show that AOB=@, suppose
Then, since <5, £>eA,
Ixex »n(X)-<s, (e 7.
But then, since <§, £>eB, we have
(19)  F(X)2s>F(X),
feY, g(X)-teyY,
and therefore, since Y is a convex cone:
(20) (g(x)-)+1 = g(x)eY.
However, (19) and (20) together contradict the assumption that x is a solution
of m. Hence ANB=p.
Q.E.D.
LEMMA 2: Under the hypotheses of Theorem 2, and with A and B defined as in
(10) and (11),

4 <y, W>€En+p‘3

i) <v, w#o;
ii.) vestw-t<vez4w-y for all <s, t>eA, <z, y>eB;
iii.) VeE,, Wevs,
iv.) v-f(x)+w-g(x)<v-f(x) for all xeX,
v.) w-g(x)=0

PROOF OF LEMMA 2:

By Lemma 1 and the "separating hyperplane theorem" (Cf., Berge [6], p. 163):
3<v, w>€En+p

satisfying (i) and (ii).
By the conclusion of Lemma 1, <f(x), g(x)>eA for every xeX. Hence it

follows from (ii) that we must have, in particular:
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ve[z-F(x)1+w-[y-g(x)1>0 for all z>f(X), yeY;

which verifies (iii).
Since <f(x), ep> is on the boundary of B and by Lemma 1,
(xeX): <f(x), g(x)>eA,
it also follows from (ii) that we must have:
(23) v-f(x)+w-g(x)<v-f(x) for all xeX,
which verifies (dv).
Finally, letting x=x on the 1.h.s. of (23), and using (22) and the
fact that g(x)eY,
we have
w-g(x)=0,
which verifies (v).
qQ.E.D.
We are at last ready to prove Theorem 2.

PROOF OF THEOREM 2:

Combining (iii)-(v) of the conclusion of Lemma 2, we have:
Ve (x) e g(x) v F(X)=ve F(X)+w. g(x)<v- F(X)+w-g(X) for all xeX, weY*,
Combining this result with (iii) of Lemma 2 and the definitidn of X, we see
that <x, v, w> is a GSP for e .
Q.E.D.
Under certain assumptions, one obtains in the classical theory of

constrained extrema (with equality constraints, and where all the functions

involved are differentiable):
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(24) A a5k, 22 f (X)r-g (X) = 0,

O ]+p O x\ ' Jx\ 7 7
where x maximizes f subject to g(x)=0p, fx represents the gradient vector
of f, and 9y the matrix of partial derivatives [3g1/3xj]- Theorem 2 is the

analogue of this result in the case where our maximand function is vector-

valued and nondifferentiable (more specifically, where our maximization

problem is of the form specified in Definition 3). If we add the rank

condition to the hypotheses implying (24), we can conclude K]#O, and obtain:
£ ()¥%-g, (x)=0,

where A=(1/x,)x. Similarly, if we add a constraint qualification (together

with some assumptions about the dimensions of Y and X) to the hypotheses of

Theorem 2, we can conclude that v#0 in our GSP, and hence that a GNSP

exists at <x, w, v> (and if n=1 obtain a Saddle Point at <x, (1/V)w> as

we noted in our earlier discussion).16 This is essentially the content

of Theorem 3, to which we now turn. We shall, however, have need for the

following lemmas in our proof. The result in Lemma 3 is quite well known,

and a proof is included here only for the sake of providing a convenient

reference.]7

LEMMA 3: Let X<E , and suppose that xeint (X), yeE . If y*x>y-x [resp.,

y-x<y-x] for every xeX, then y=o .

PROOF:
If xeint(X), 3 %>0 3 x+iyeX, and we have

y- X+ = y-x+dy-y.
Hence, if y#@n,
y-[x+3y]>y-X.

The result with the reversed inequality follows immediately from this.

Q.E.D.
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LEMMA 4:
If:
1.) g: Em+En, where 1p>n,
2.) g is affine, i.e., g(x)=Gx+b, and rank (G)=n,
3.) XSE > xeint(X);
then there exist open neighborhoods N](Q)Q;X, Nz[g(i)]élEn'a
N,L9(x) 1S g[N; (x) 1.
PROOF
Partition the matrix G by
G=[Gy G,1,
where G] is nxn, and we assume w.1.0.g. that rank (G])=n. By assumption,
AN (x) DN () EX.
Write
x=x! XEs,
where qu En, izeEm_n. Then 3N3(§4)'3 ZgN3(§4)i><Z,§2>€N](§).
Define h on En by
h(z)=G]z..
It then follows by Theorems 7-3 and 7-4, pp. 141 and 143, respectively, in
Apostol [1], that:
n,[h(x')I 2
N Ch(X) IS RN, ()],
But, it is clear that

¥ = g(X)eN,[h(x1) 146X +b Sl (X)]1.
Hence, noting that if M is an open sphere containing y, M#} is an open sphere

containing y+y; we see that if we define:
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N, [a(x) J=N, [0 (i) 46,5 +b,
N, is an open sphere containing g(x)and
Nz[g(i)JGEQ[N](§7]-
Q.E.D.
THEOREM 3:

If:
1.) <, g, X, Y>defines a maximization problem,n , where:
a.) X is convex, int(X)#0,
b.) f is concave (i.e., E;-concave) on X,
c.) Y is of the form Y=Y]xY2, where
i.) Y1QE, Y,€E, (atr=p)
ii.) 1nt(Y2)¢¢ (in Er)

d.) g is of the form g(x)=<g(])(

X), 9(2)(x)>, where
i.) g(]): D+Eq, 9(2): D-E .
ii.) g(]) is affine]B (g(])(x)=Gx+b), and we assume w.l.0.g.
that rank (G)=q
s (2) . ‘
iii.) g is Y2—concave on X,
2.) g satisfies:

. 30 Dytes (1) 1
€Q.: i.) IxTeint(X)® ¢/ (x")eyY
1 1

ii.) dx*eX g(])(x*)eY], 9(2)(x*)eint(Y2)
3.) XeX is a solution of m;
then
Vt[E:\{en}], WeY¥ag has a GNSP at <k, V, W
PROOF : '

It is clear that g is Y-concave on X. Hence, we can readily verify that

the hypotheses of Theorem 2 are satisfied. Thevrefore, by Theorem 2:
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3w, w>s;Ener E5)

(25) -, w>#e

(26) Vb, Wer

and ¢ has a GSP at X, V, w>. Moreover, by Lemma 2:

(27) v-stw-t<v-ztw-y for all <s, t>eA, <z, y>eB;

where A and B are defined in (10) and (11), above.
Writing W= ! ,W2>, where W gEq, WZEEr’

we see that we have from (27):
—2 —1 1 2

(28) V7f(x)+Wq-g(])(x)+w (2 )(x)<v 4t ty +w -y~ for all xeX, y]sY], ystz

Suppose now that v=¢. Then by (28) and (ii) of CQy, we have:
Wq'g(])(x*)+W2-g(2)(x*)§QJ‘g(1)(x*)+W2-y2 for all y2€Y2,

or

=2 (2)( ) 2 \

(29) y for all y €Y2

Hence by Lemma 3:
2 o
(30) w =0, (if v en)
We then have from (28) (if Véen):

1

(31) Wq'g(])(x);ﬁq-y for all y]EY], xeX,

By (i) of CQ],HXTEint(X); (1 )(x JeY,. Since x+€1‘nt(x),
I ex.

Define

v,

We then have by Lemma 4:

I ohee, > mohed Ve,
Hence by (31), we have:

3 1.+

w oy <w .y for all y]sN](y+).
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It then follows from Lemma 3 that:
] =
(32) w —q%(1f v—qﬂ.

Combining (30) and (32), we see that if Véen, we have:

b

=
WV, W en+p

contradicting (25). Therefore V#6, and ¢ has a GNSP at <X, V, W>.

N

Q.E.D.

The following result is almost a special case of Theorem 3]9; and
is, moreover, essentially a special case of Professor Hurwicz's Theorem

V.3.1 in [8] (p. 91). It is included here for the sake of completeness.
THEOREM 4 - COROLLARY {HURWICZ):

If:
1.) <«f, g, X, Y> defines a maximization problem, w, where:
a.) X is convex,
b.) f is concave (i.e., E:—concave) on X,
c.) int(Y)#®, g is Y-concave on X
2.) g satisfies:
Co.: 3x*ex B g(x*) e int(Y), 20
3.) 52;115 a solution of m
then
HVd:E:\{en 0, we¥* D o has a GNSP at <x, v, w>.
PROOF :

Re-examining the proof of Theorem 3, we see that the only steps in
the argument which used the assumption int(X)#@ were in the proof that
Véen implies W4=eq. Hence Theorem 4 follows as a corollary of the proof
of Theorem 3.

Q.E.D:
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The foilowing resuit is an immediate corollary of the proof of Theorem
3:

THEOREM 5 - COROLLARY:

If:
1.) <«f, g, X, Y> defines a maximization problem, m, where:
a.) X is convex, int(X)#9,
b.) f is concave (i.e., E:-concave) on X,
c.) g is affine,
2.) g satisfies:
ey AxTeint(X) 2 g(xMey,
3.) igx is a solution of m;
then:

AVe[E \{0 31, WeY*20  has a GNSP at <X, V, i>.
Theorem 3 is a generalization and slight correction of Theorem 3 1in

Uzawa [14], p. 36.2

An example of a situation wherein Theorem 3, but
not Theorem 4, is applicable is given by the last example on p. & ; if
the functions hi appearing there are assumed to be affine for i=1, . . .,
q, concave for i=q+l, . . ., r, and convex for i=r+1, . . ., p (and we

suppose that X is convex, and f is E:-concave on X). To see this, suppose

we define

+
X
r-q

+

p-r]’ and Y=Y]xY2.

[-E

We note that, under the current assumptions, <f, g, X, Y> defines a

Y] = {eq}, Y2=E

maximization problem, and g is Y-concave on X. However, it is impossible
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for g to satisfy CQ2 in this case, since int(Y)=0. We can, however,

apply Theorem 3 if g satisfies CQ;.
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(OF § S

17
GEOMETRY OF GENERALIZED SADDLE POINTS
We shall begin our discussion of considering some facets of the geometric

nature of a GSP. Suppose we have a maximization problem, n, defined by

<f, g, X,Y>, and suppose ¢_ has a GSP at <x, v, WSEEm+n+p' Then
(1) VkE:, weY*,
and

(2) vef(x)+w.g(x)<veF(X)+w-g(x)<v-f(x)+w-g(x) for all xeX, we¥*.
It is clear, then, that the existence of a GSP at <x, v, w> implies:
(3) w-g(x)=0.
Therefore, if b=<z, y>€En+p is such that:
(4) z>f(x), ye¥;
we have:
V- f(X)+w-g(X)Sv-z+n-y.
Recalling the definition of the set B used in Section II}
(5) B(m, x) = {b=<z, y>eEn+p| z>F(x), ye¥},
we see that:
(6) V-f(X)+w-g(X)<v-z+w-y for all <z, y>eB(m, x).
Moreover, by (1) and (2), we see that if XeX and a=<s, t>€En+p are such
that:
f(x)>s, g(X)-teV,
then
V-[f(x)-5120, w-[g(X)-t]>0;
and therefore

(7) V‘s+ﬁ3§§V3f(§)+ﬁ3g(§LiV3f(Yyﬁig(§)..




™)
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Recalling our definition of the set A given in Section II:
(8) A(w) = {a=<s, t>eEn+p] @xeX)f(x)>s, g(x)-teY};

we see that:

(9) vestwetsvef(X)+w-g(x) for all <s, t>eA(n).

If as in Section Il we write

(10) h_(x) = <f(x), g(x)>,
and
(11) u = <v, w> ¢ E:x Y*,
we have by (6) and (9):
(12) u-a<u-h_(x)u-b for all acA(m), beB(m, X).

From (12) we see, therefore, that a necessary condition for the existence
of a GSP for ¢_at x is that there exist a vector u=<v, WSEEZXY* such that
u separates the set A(m) and B(m, X) (Clearly this is also a sufficient
condition, as we showed in the proof of Theorem 2). The qdestion of whether
¢ also has a GNSP at x boils down to whether there exists such a vector u
which has V#en. We shall now examine the function of the constraint
qualification in guaranteeing that such a u does exist.

Suppose we begin by examining an illustrative situation in which no
GNSP exists. In his very important 1950 article [13], Slater presents an
example to show that the constraint qualification he'd introduced could not
be dispensed with if one was concerned with the existence of a 6NSP (in
our terminology). Slater's example dea]s with the maximization problem,
T, defined by <f, g, Eqs E;>, whe;e

f(x) = 1-x
g(x) = -(x-1).

Clearly the only solution of this problem is at x=1. The image of the function

2
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In this case, it is apparent from Figure 1 that no vector EéE;XET=E;

exists which has a non vanishing first coordinate and which separates the
sets A(m) and B(w, 1). Hence no GNSP exists for ¢ at x=1. Notice,
however, that @# does have a
GSP at x (as we would expect, since all the hypotheses of Theorem 2 are
satisfied here); in fact, ¢, has a GSP at <1, 0, 1>.

In order to examine the workings of the Slater Constraint Qualification
(which we shall hereafter refer to as the Slater CQ) in a little greater
detail, suppose we consider the class of maximization problems, P, defined

by <f, g, X, ET>, where:




™
e

(xener .,
(13) f: D—>E-|,
g: DoE-

bv Bg l,
and f and g are concave on X. Let 7eP and suppose x is a solution of .

If the Slater CQ holds, we can distinguish two cases, as follows.

CASE 1: g(x)>0.

In this case we'll have the sort of situation shown in Figure 2,

below. While we don't have enough information to graph the set A(n)
we know that the set A1 shown in Fig. 2 will be a subset of A(m).
Clearly, then, any vector u separating A(rm) and B(w, x) must have

EH=V¥O (in fact, any separating vector u must be a scalar multiple

of u=<1, O>).23
e e ’
- | - 4 e
Blw,x)
hﬁ(?ylf
—4
- ‘.o. — —
1
A

Figure 2

>
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CASE 7: g(x)=0.
In this situation, according to the Slater CQ, there exists x*X>g(x*)>0.
Hence hﬂ(x*) must stand in something like the relationship to hﬁ(i)
shown in Figure 3, below. While once again we do not have sufficient
information to graph A(T), we know that the set A] shown in Fig. 3
will be a subset of A(m). Hence, it is clear from our diagram that
+

any vector u=<v, W5gE2 which separates A(n) and B{m, x) must have

v#0.

73} kg

. .
\ N A

Figure 3

It is apparent from our discussion of the above two cases (and from a
careful reading of the proof of Tﬁeofem 3) that if weP, the Slater CQ does
more than guarantee the existence of a GNSP for @ﬂ at a solution of 1.

It actually guarantees that if ¢ has a GSP at <X, V, w> it is necessarily

a GNSP. Consequently, it might appear that if one wished to concentrate
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on developing a set of conditions sufficient only to ensure the exisfence of
a GNSP at x, a solution of ﬂ; for some EEE:XY*F(and allowing for the
possibility of the existence of other vectors u=<v, w>™ <x, v, w> is a
GSP for o but v=en); one could weaken the Slater CQ for this purpose.
However, if the Slater CQ does not hold, the possibility arises of .
obtaining the sort of tangency solution depicted in Fig. 1; and it is
difficult to see how any weaker condition could be developed which would
have anything like the "nice" operational properties of the Slater CQ, and
which would guarantee that this sort of tangency could not occur.

In the development of a theorem analogous to our Theorem 4, Karlin
introduced ([10], p. 201) an interesting constraint qualification of a
form different from the Slater CQ. Hurwicz and Uzawa proved in [9] that
in very general spaces these two constraint qualifications were actually
equivalent. Our next lemma is a special case of the Hurwicz-Uzawa result.
It is presented here for both the sake of completeness and because it
seems reasonable to take advantage of the more elementary spaces with which

we're dealing to present a proof involving more elementary mathematics than
that used by Professors Hurwicz and Uzawa.
LEMMA 5 (HURWICZ-UZAWA):
If:
1) KDQm,g:D{p,
2.) X is convex and non-empty,
3.) YQEp is a convex cone, int(Y)#9,
4,) g is Y-concave on X;
then the following are equivalent:
cQ,: dx*eX 3 g(x*)eint(Y),

CQK: (ze[Y*‘\{ep}])(ﬂan): z+-q(x)>0.



J

PROOF:
i) CQ.Cq, .
If zeY* is D Z-g(x*)=0, we have
z+g(x*)<z-y for all yeY.
Hence by Lemma 3, EEGP. Therefore:
(Ze[Y*\\{ep}]) z-g(x*)>0.
i1.)  CQ =Cq,.
. Suppose CQK holds, but that:
(13) )ﬂx*eng(x*)éint(Y).
Define
A= teE, | Gxex)g(x)-tev).
Clearly A is convex (see the statement and proof of Lemma 1, above), and
non-empty. Moreover, if there existed a vector t such that teANint(Y),
then we would have:
X 9 g(x)-T.y.
But then, since teint(Y), it would follow that:
[g(x)-t]+t = g(xX)eint(Y)
(since if yeY, yeint(Y), y+yeint(Y); for Y a convex cone), which contradicts
(13). Therefore:
(14) ANint(Y)=0.
Hence, since the convexity of int(Y) follows from the convexity of Y; we have
by the "Separating Hyperplane Theorem"(see Berge [6], p. 163):
3W8Ep3
(15) w#ep, and
(16)  w-t<w-y for all teA, yeint(Y).
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However, it is clear from (16) that:

(17) weY*,

and from (16) and the definition of A that:
(18) (xeX): w-g{x)<0.

But (17) and (18) together contradict the assumption that the Karlin cQ
(CQK) holds. Therefore (13) is fé1se, that is, dx*eXag(x*)eint(Y).
| Q.E.D.
In reading the literature on saddle point theorems for the non-
differentiable case, one is likely to get the feeling that a constraint

qualification is not needed for the existence of a GNSP in the case where the
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constraint function g is affine. More precisely, one might speculate

that Theorem 5 of the previous section would remain correct if hypothesis 2
(CQ3) were omitted. The constraint qualification cannot be dispensed with

in this case, however, as the following example shows. Let the maximization

+ _+ +
'l’

problem m be defined by <f, g, E E{>» where X=D=E,,

0 for x=0
f(x)=
1 for x>0

g(x)=-x.

Clearly x=0 is the only solution for m, and all the hypotheses of Theorem 4
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are satisfied except hypothesis 2 (€Q;).” The sets A(T) and B(T, X),

and the image of the function ho are shown in Figure 4, below. - It is

apparent that any vector u=<v, W$eE2‘which separates A(m) and B(w, X)



J

N
(X

y.l..‘.,..w. RN - © P e ' O o Felure o - ’1 - /\
N N SN % s
2 72 N
- . N
AN
N, . N
!

Figure 4

must have v=0. Hence o does not have a GNSP at x. It should be noted that
the need for the constraint qualification is not eliminated by requiring the
maximimand function, f, to be continuous. The reader can easily verify
that the maximization problem defined by <f, g, X, Y>, where

D=X=[0, 1],

’ 1—x2,

f(x)

g(x) = x-1,

Y = EF

1" Y=0%
does not have a GNSP at its solution, x=1.

We have shown in the above examples that the constraint qualifications
used in Theorems 3-5 of Section II cannot be dispensed with. Theorem 3
can be proved, however, with any one of several constraint qualifications;
which, at least at first glance, appear to be non-equivalent. Hence the
following result may be of some_interest.
LEMMA 6:
If:

1.) X@DQEm, g(x)=<g(])(x), 9(2)(x)>, where g(]): D+Eq, 9(2): D+Ers -



then

30

2.) X is convex, int(X)#9,
3.) Y]C_‘Eq and YZQEr aré convex cones,
4.) 1nt(Y2)#Q (in Er)’
5.) g(]) is affine,
6.) 9(2) is Y2—concave on X;
the following are all equivalent:
0, i.) ITeint(x) 201 (x Dev,
i1.) Bcexag M (ener ), o B xmeine(y,),
e Fxeint(03 g M ery, o B eint(y,),
Q- i) 3xeint(0) 29 M R)ev,, o2 (R)ey,
ii.) 3x**eDag(])(x**)aY] 9(2)(x**)s1nt(Y2).

PROOF:

i.) Obviously CQ4=>CQ]. To prove the converse, define
= gy, yx = o).

Since y*eint(Yzlaik(O, 1)

(18)

Xy++(1if)y*aint(Y2).

Define

X = 7X++(1JX)X*.

Then, since xfeint(X), >0, and X is convex:

(19)

Moreover, since g

(20)

while, since g

(21)

xeint(X).
(1)

is affine, and Y] is convex:

oMy = XM (xhy+ (13 (xx)ey
(2)

is Yz—concave:

9(2) (>~<)-[7y++( 1 —T)y*JEYZ.

By (18) and (21), it follows that:

(22)

(o) ()1 T+ (1 D)y 110y T+ (1) y =g U R)e nt (v

2)'
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Therefore, by (19), (20), and (22), we see that x satisfies the requirements
of €Q,. Hence, ’
CQ4<:’> CQ].
ii.) Obviously CQ4:?-CQ5. The proof of the converse proceeds in a
fashion very similar to that developed in (i), above. This time we can
choose Xe(0, 1) small enough so that, letting
x = Xx*(1-1)K,

we have:
xeint(X).

We then can easily show, in the same way as in (i), that:
s v, o' Geint(y,).

Hence CQ5<:>CQ4.

Q.E.D.

By way of concluding our discussion, suppose we consider a problem
tangentially related to the material of this section. In many applications
of saddle point theorems to problems in Economics, one may be interested
in conditions sufficient to guarantee that w does not vanish. For instance,
the vector w may lend itself to a "shadow price" interpretation; and in
these circumstances it is clearly of some importance to determine whether
or not w=6. After our discussion of the function of the consfraint
qualification in guaranteeing that v#9, however, the following result is
fairly obvious.

THEOREM 6:
If:

1.) <, g, X, Y>defines a maximization probtem,  ,



2.) & has a GSP at <x, v, weE ,
Pt mtnt+p’

3.) IxeX D F(x)>>F(X)

w6,

PROOF :

If w=0, then by the existence of a GSP at <X, Vv, w>, we have:

v-f(x)<v-f(x) for all xeX,
where v>8_. But this would mean

<v-f(x);

n
v-f(X)<
which is impossible; since

v-[f(X)-f(X)1>0.

Hence w#6.

COROLLARY
If:
1.) <f, g, X, Y> defines a maximization problem, u, where:
a.) X is convex,
b.) f is concave (i.e., E:—concave) on X,
c.) g is Y-concave on X,
2.) XxeX is a solution for m,
3.) AxeX 2 () >>f(X),
then o
Ve, we[Y¥\{6.}]D ™ has a 6P at <, V, W
PROOF :

This result follows immediately from Theorems 2 and 6.

Q.E.D.
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Notice that the conditiOﬁs sufficient for the nen-vanishing of w
stated in the above results require that the constraint g(x)eY be effective
in the sense that the solution x is not a solution of the

maximize f(x) subject to ng.26
Moreover, in the special case where n=1, (i.e., where f: D+E]), we see
that the effectiveness of the constraint g(x)eY (in the sense just stated)

is sufficient to guarantee the non-vanishing of W127
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APPENDIX

+

1.) In this section, we shall show that if f is defined on E] by

f(x) = 4%,

then Zh >
h: E]+E],
and h is concave on all of E].

h(x)=F(x) for xeE],

PROOF :

Suppose b.w.o.c. that there exists such a function, h.

we must have:
h(x)<0 for x<0.

Suppose, then, that we are given x<0, and
(1) ¥ h(x)<0.
Consider the point x defined by
(2) x = gg

4y?
Cleariy x>0, and therefore
(3) h(x) = +4/x = Xi > 0.

2y

Define

—2
(4) % =-H—

4y~ -x
Then, since x<0, we have:

0<<T.
Therefore, if h is concave, it must be the case that

NIRRT 0)+(1-D0(R)
Y

[ E [1 —i:z—_jy - Lo,
492_§- 2y o dyex 4y~ -x

Then clearly
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However, we have:

*x + (1X)x = 0,
and therefore

h[xx + (1-X)x] = f(0) = 0,
which contradicts (5). Consequently if h: ET*E] and h(x) = f(x) for xgET,
h is not concave.

2.) PROFESSOR UZAWA'S THEOREM 3.

As indicated previously (n. 21), there'appear to be some misprints in
the statement and proof of Professor Uzawa's Theorem 3, pp. 35-37, in [14].
Because of the importance of the Uzawa article, it would seem that a brief
discussion of these apparent misprints would be of some value; especially
since the published version of Professor Uzawa's Theorem 3 (with misprints)
makes it appear that some of the hypotheses of our Theorem 3 could be
weakened in a fashion which would, in fact, make the theorem incorrect.

Using the notation developed in this paper, the necessity portion
of Professor Uzawa's Theorem 3 can be stated as follows:
If:

1.) <f, g, E; , Y> defines a maximization problem, 5, where

a.) D=Em,
i) f: EoF,
ii.) g = <g(]), g(2)>’ where

g(”: %7Eq
g2), e (qtr=p),
b.) f is concave on Eml
c.) Y is of the fonn{eq}xEt _
d.) g(]) is affine, g(])(x) = Gx+b, and we assume w.l.0.g. that
rank (G) = q,
(2)

. . L+
e.) g is concave (i.e., Er—concave) on Em’



w
w

2.) g satisfies:

= P i U 1)1, 2), .1
CQu: for each i, i=1, . . ., m,3dx >0, D Xi>0’ g( )(x )~eq, g( )(x )iar

3.) xeX is a solution of m;
then
3 WhY*(=EqXE;)'3 ¢ has a Saddle Point at <x, w>.
This statement is incorrect, the problem being a misprint in the
Constraint Qualification, apparently. We can verify this as follows:
First of all, we note that Eﬁﬁ is equivalent to:

q: :3xT>>em'3 g(])(xT)=6 , 9(2)(x+)3§r.

q
(To show that EQQI?EQ} Tet

.i.

X = M

i=1 A=1)

i : . M
Aix , Where A1>O for i=1, . . ., m; and %, ;=

i=1

The following then provides a counterexample (it was, of course,
developed from the counterexample presented by Slater in [13]) to the above
statement. Let

f(x) = X112,

g(x) = <g(])(x), g(z)(x)> = <x]+x2—1, —(2x]+x2- 3/2)2>.
Let m be defined by <f, g, E;, {O}XET>. We can readily verify that =
satisfies hypothesis 1, and that x =<1/2, 1/2> satisfies CQ and is the

solution of m. We can readily show, however, that if there existed a

WéE]XET D¢ had a Saddle Point at <x, w>, it would be necessary that

Xy =1/2 1
—_— = ————  for x]e[O, 1/2), x
(x]—]/2)2 1/2 - x

W2:_>_—

+x, = 1.
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But this is impossible, since the expression on the right approaches 4~ as
x]+1/2 . Hence ZﬁéE]XET’E @w has a Saddle Point at <x, w>.

Professor Uzawa's Theorem 3 becomes correct if we substitute:



(o8]
[Us)

CQu: for each i, i=1, . . ., m, Hxiﬁam‘B
(])(xi) (2)( i

x::>0, g =g, ¢ X.)>>em;
which is apparently the constraint qualification which would have appeared
in his Theorem 3 but for the misprint. Equivalently, we could use:
CQZ: ._:]XTL>>em 3 g(])(x+)=9, g(z)(xT)>>e.
It should also be pointed out, however, that there is a misprint of
some significance in Professor Uzawa's proof. The set B used in the proof
should be defined by (in Prof. Uzawa's notation):

B = {<ZO’ z, .y>l Zo>f(;(_)> 21:05 ZII>O’ y;0}°
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Theoretical and Applied Economics.

Zlf_gz D%En, where DEE_ is convex, we say that g is CONCAVE on D

if for all x], x2€D, and for all scalars xe[0, 1], we have

2 2
gL +(1-0)x“ 1229 ) +(1-2) g (%) .
A function, g, is CONVEX if -g is concave.
3p Tine of development first explored by Slater [13].

4Kuhn and Tucker, in [11], had begun this investigation with their
consideration of the "vector maximum problem."

5The terminology used here is not quite consistent with normal
mathematical terminology, since the term "affine" is normally used for
a mapping of a space into itself. "Affine" seems to be a better term than
“Tinear," however, since "linear" is normally taken to mean (in the
Euclidean case) that g is of the form g{x)=6x.

6Our notation here is an adaptation of that introduced by Hurwicz in
[8]. Note that we're using 7 generically to denote maximization problems
of the type defined in Definition 3. It should also be noted that our
treatment here is somewhat asymmetric. If YZE_is a convex cone, the
ordering defined by x>,y iff x-ye¥ is what is Rnown as a vector ordering.
Moreover, the ordering, >, of E_which we've defined in the text, is a .
special case of a vector orderiﬂg. Hence in many ways a more natural approach
would be to deal with maximization problems, w, defined (given the situation
of Definition 3) by <f, g, X, >, >,>, where > is a vector ordering of Ej,
and > is a vector ordering of Ep. We would then say that x is a solution
of m1ff:
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and R A _
(2h) #ReX 3 g(x)>p8, and f(x)>f(x).

P

This is the kind of approach teken by Prof. Hurwicz in [8] (a more symmetric
approach is alsc followed by the present author in [12]). For the purposes
of this paper, however, it seemed that the problem under discussion here

was sufficiently simpler than this more symmetric treatment, and sufficiently
general, to justify our Definition 3.

7Reca]1, however, that we intend to treat only the case where the
functions f and g are not necessarily differentiable.

8A case of this sort which is familiar to Economists occurs when f
is a vector of utility functions, and we are seeking a Pareto-Optimal
point.

9Moreover, if g(]) is affine, hj is concave for i=q+l, . . ., r, and
convex for r+l, . . . , p; g will be Y-concave, so that the necessity results
of Section II will apply. Note in particular Theorems 2 and 3.

]OAS is apparently the case in the parenthetical remark on p. 780 of
the valuable work by Arrow and Enthoven [2]. It may be that Professors Arrow
and Enthoven did not mean to imply that a function defined and concave on
a convex subset of Ej could be extended to a function defined and concave
on all of Ey; but rather that, under these circumstances, it could be
extended to a function defined and quasi-concave over the whole space. This"
latter statement also appears to be incorrect, however, as the following
example shows. Let f be defined on Ef\{0} by:

f(x) = log x.

+
Then f is defined and concave on Ey \ {0}, which is a convex set, but it is
clear that there is no way of extending f to a real-valued function defined and quasi-
coricave over the whole space. It should be emphasized, however, that
the statement in question is in the nature of an aside, and in no way
affects the text of the Arrow and Enthoven article.
+

]]An example of a function which is concave and continuous on Ey, has
continuous derivatives of all orders on the interior of ET, but which is
nonetheless not extendible is provided by:

f(x) = X for x>0.

For a proof that this function is not extendible see Appendix (1), p. 36.

]ZThis terminology is an adaptation of that introduced by Hurwicz in [8].
Note that if n=1 (i.e., if f: D*E]), we have

@ﬁ(x, 1, w) = f{x) + w-g(x);

which is the usual form of the Lagrangian expression:




42

]3The types of saddle points introduced here are given somewhat
different definitions by the author in [12]. The concepts developed there
reduce to the definitions presented here, however, for the type of
maximization problem with which we are concerned in this paper. Once again
the notation is an adaptation of that introduced by Hurwicz in [8].

]4We denote the set-theoretic difference of A and B by ANB, i.e.,

ANB = {acA| a¢B}.

]SThe author is grateful to Dr. Mohamed El1-Hodiri for bringing both
the book and this particular theorem to his attention. The theorem stated
by Berge is also implicit in Uzawa's proof of his Theorem 2 in [14].

]6The reader might argue, however, that in view of Theorem 1, the more
basic question is whether a GPSP exists. We shall not examine this
question in the present paper, but the author has essayed such an investiga-
tion in [12]. Note, however, that if m has a GNSP at <x, v, w, and we
define F(x) = v-f(x), and consider the maximization problem, wl, defined
by <F, g, X, Y>, 7l has a Saddle Point at <x, w>. Therefore, by Theorem 1,
x is a solution of 7!, This property is often useful in applications.

]7Lemma 4 is more or less a standard result of Functional Analysis,
and in fact is usually proved for spaces of greater generality than those
with which we are dealing here. The author has been unable, however, to
Jocate a reference presenting the special case of Lemma 4 (which makes
possible a more elementary proof than that usually provided in the
texts on Functional Analysis). This is why a proof is included here.

]8Note that we can generalize this theorem by substituting

iil) g(]) is open and Yy-concave on X, for hypothesis 1-d-1ii
of the text. .

]glt is not quite a special case of Theorem 3, for the reader will note
that the assumption :

int(X)#0
is not included in the hypotheses of Theorem 4.

20The reader will recognize this as a generalization of the constraint
qualification introduced by Slater in [13]. It was first used in this
general form by Hurwicz in [8].

2]There is an apparent misprint in the statement of the constraint
qualification in Professor Uzawa's theorem. We shall discuss this result
in Appendix (2).
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22 3 1 + -t , R i
Defining g( ) - —g( )? and Y=E XYZXL does not, of course, solve the

prob]em either; since, defining g = <g(]) (2) (3) , the existence of
an x* X satisfying CQS would then involve a contrad1ct1on

23Not1ce that in this case the constraint g(x) is not effective
in the sense that, if f and g are concave on X, X ma;1m1zes f subject to
xe X. We can show that this must be the case by supposing b.w.o.c. that
IkeX D F(R)>F(X). Define

A= :‘g‘(’)&)‘—“’“’—\‘ , and X =7Z+ (]-X)Q

x

Then
0<A<1, so that XeX;

but:

g(x)2Ag(x)+(1-2)g(X)

FX)AF(X)+(1-X) F(R)>F(X),

0, and

which contradicts the assumption that x is a solution of m. Alternatively,
we can show the same result by the following reasoning. It follows by
Theorem 2 that a GSP exists for ™ at X; and therefore we have by the
parenthetical remark in the text:

F(x)Xf(X) for all xeX.
24See, e.qg., Karlin [10], Theorem 7.1.2, p. 203. Note, however, that
the example in the text is not a counterexample to Professor Karlin's

theorem, which requires (in the context of our example) f to be defined
and concave over all of Ey.

25Note, moreover, that all the hypotheses of Theorem 4 are satisfied
except CQs. Hence this example also shows that Theorem 4 does not remain
correct if the assumption that g is affine is substituted for CQs.

26See p.24 and n. 23, above.

27See [12] for app]icationsof‘these results to Activity Analysis.



