4,406 research outputs found

    The 1984 NASA/ASEE summer faculty fellowship program

    Get PDF
    An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy

    Tunneling Anisotropic Magnetoresistance of Helimagnet Tunnel Junctions

    Full text link
    We theoretically investigate the angular and spin dependent transport in normal-metal/helical-multiferroic/ferromagnetic heterojunctions. We find a tunneling anisotropic magnetoresistance (TAMR) effect due to the spiral magnetic order in the tunnel junction and to an effective spin-orbit coupling induced by the topology of the localized magnetic moments in the multiferroic spacer. The predicted TAMR effect is efficiently controllable by an external electric field due to the magnetoelectric coupling

    Spin-polarized tunneling through randomly transparent magnetic junctions: Reentrant magnetoresistance approaching the Julliere limit

    Get PDF
    Electron conductance in planar magnetic tunnel junctions with long-range barrier disorder is studied within Glauber-eikonal approximation enabling exact disorder ensemble averaging by means of the Holtsmark-Markov method. This allows us to address a hitherto unexplored regime of the tunneling magnetoresistance effect characterized by the crossover from momentum-conserving to random tunneling as a function of the defect concentration. We demonstrate that such a crossover results in a reentrant magnetoresistance: It goes through a pronounced minimum before reaching disorder- and geometry-independent Julliere's value at high defect concentrations.Comment: 7 pages, 5 figures, derivation of Eq. (39) added, errors in Ref. 7 correcte

    Surface nano-patterning through styrene adsorption on Si(100)

    Full text link
    We present an ab initio study of the structural and electronic properties of styrene molecules adsorbed on the dimerized Si(100) surface at different coverages, ranging from the single-molecule to the full monolayer. The adsorption mechanism primarily involves the vinyl group via a [2+2] cycloaddition process that leads to the formation of covalent Si-C bonds and a local surface derelaxation, while it leaves the phenyl group almost unperturbed. The investigation of the functionalized surface as a function of the coverage (e.g. 0.5 -- 1 ML) and of the substrate reconstruction reveals two major effects. The first results from Si dimer-vinyl interaction and concerns the controlled variation of the energy bandgap of the interface. The second is associated to phenyl-phenyl interactions, which gives rise to a regular pattern of electronic wires at surface, stemming from the pi-pi coupling. These findings suggest a rationale for tailoring the surface nano-patterning of the surface, in a controlled way.Comment: 19 pages (preprint), 4 figures, supplementary materia

    Currents, Torques, and Polarization Factors in Magnetic Tunnel Junctions

    Full text link
    Application of Bardeen's tunneling theory to magnetic tunnel junctions having a general degree of atomic disorder reveals the close relationship between magneto-conduction and voltage-driven pseudo-torque, as well as the thickness dependence of tunnel-polarization factors. Among the results: 1) The torque generally varies as sin theta at constant applied voltage. 2) Whenever polarization factors are well defined, the voltage-driven torque on each moment is uniquely proportional to the polarization factor of the other magnet. 3) At finite applied voltage, this relation predicts significant voltage-asymmetry in the torque. For one sign of voltage the torque remains substantial even when the magnetoconductance is greatly diminished. 4) A broadly defined junction model, called ideal middle, allows for atomic disorder within the magnets and F/I interface regions. In this model, the spin dependence of a state-weighting factor proportional to the sum over general state index of evaluated within the (e.g. vacuum) barrier generalizes the local state density in previous theories of the tunnel-polarization factor. 5) For small applied voltage, tunnel-polarization factors remain legitimate up to first order in the inverse thickness of the ideal middle. An algebraic formula describes the first-order corrections to polarization factors in terms of newly defined lateral auto-correllation scales.Comment: This version no. 3 is thoroughly revised for clarity. Just a few notations and equations are changed, and references completed. No change in results. 17 pages including 4 figure

    Enhanced Ethanol Dehydration with Hydrostable Inorganic Pervaporation Membranes

    Get PDF
    Membranes which allow water diffusion in favour of other substances can offer increased efficiency in processes to dehydrate ethanol. Silica membranes can perform this selective diffusion, but have mostly been reported for their gas high gas separating ability. This work investigates the effectiveness of carbonised template molecular sieve (CTMSS) membrane to dehydrate ethanol/water mixtures. The silica derived top layer of the membrane was measured at 20nm thickness by XPS sputtering technique. However, the silica enters the porous structure of -alumina layer in excess of 90nm. After 200 minutes of operation, H2O/EtOH selectivity increased to 5.6 from around 1 due to gradual pore filling by adsorbed water and ethanol which contributed to inhibiting ethanol transport. The smaller water molecules were thus favoured in transporting to the permeate side. Total mass flux using a 10% ethanol feed remained constant at around 1.5 kg.m-2.hr-1. Selectivity of up to 9.5 was achieved when azeotropic feed solutions of 95% were used, displaying the potential for this technology for a wide range of ethanol dehydration applications. Pressurising the feed up to 400 kPa doubled the permeate flux, but enhanced the transport of ethanol over water

    Thermionic emission perpendicular to bulk and multiquantum AlxGa1-xInP barriers

    Get PDF
    A study on thermally activated currents across the bulk and multiquantum barrier (MQB) AlxGa1-xInP/GaInP has been carried out and compared to experimental results from a series of n-i-n diodes over a range of temperatures. By considering the true quantum mechanical nature of the barriers, in contrast to the classical Richardson formalism, it is found that the alloy crossover strongly affects the transport properties of the material. The measured prefactor is found to decrease as Al content is increased. When applied to the MQB structures, the existing model fails to capture the experimental results. (c) 2006 American Institute of Physics. (DOI:10.1063/1.2181648

    Magnetic Diode Effect in Double Barrier Tunnel Junctions

    Full text link
    A quantum statistical theory of spin-dependent tunneling through asymmetric magnetic double barrier junctions is presented which describes bothboth ballistic and diffuse tunneling by a single analytical expression. It is evidenced that the key parameter for the transition between these two tunneling regimes is the electron scattering. For these junctions a strong asymmetric behaviour in the I-V characteristics and the tunnel magnetoresistance (TMR) is predicted which can be controlled by an applied magnetic field. This phenomenon relates to the quantum well states in the middle metallic layer. The corresponding resonances in the current and the TMR are drastically phase shifted under positive and negative voltage.Comment: 10 pages, 4 Postscript figures, submitted to Europhys. Let

    Impurity-induced tuning of quantum well states in spin-dependent resonant tunneling

    Full text link
    We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWS) which depends on the impurity potential, impurity position and the symmetry of the QWS.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Tunnel junctions of unconventional superconductors

    Full text link
    The phenomenology of Josephson tunnel junctions between unconventional superconductors is developed further. In contrast to s-wave superconductors, for d-wave superconductors the direction dependence of the tunnel matrix elements that describe the barrier is relevant. We find the full I-V characteristics and comment on the thermodynamical properties of these junctions. They depend sensitively on the relative orientation of the superconductors. The I-V characteristics differ from the normal s-wave RSJ-like behavior.Comment: 4 pages, revtex, 4 (encapsulated postscript) figures (figures replaced
    corecore