We present an ab initio study of the structural and electronic properties of
styrene molecules adsorbed on the dimerized Si(100) surface at different
coverages, ranging from the single-molecule to the full monolayer. The
adsorption mechanism primarily involves the vinyl group via a [2+2]
cycloaddition process that leads to the formation of covalent Si-C bonds and a
local surface derelaxation, while it leaves the phenyl group almost
unperturbed. The investigation of the functionalized surface as a function of
the coverage (e.g. 0.5 -- 1 ML) and of the substrate reconstruction reveals two
major effects. The first results from Si dimer-vinyl interaction and concerns
the controlled variation of the energy bandgap of the interface. The second is
associated to phenyl-phenyl interactions, which gives rise to a regular pattern
of electronic wires at surface, stemming from the pi-pi coupling. These
findings suggest a rationale for tailoring the surface nano-patterning of the
surface, in a controlled way.Comment: 19 pages (preprint), 4 figures, supplementary materia