7,901 research outputs found

    Ultraviolet observations of the X-ray photoionized wind of Cygnus X-1 during X-ray soft/high state

    Full text link
    (Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features show strong, broad absorption components when the X-ray source is behind the companion star and noticeably weaker absorption when the X-ray source is between us and the companion star. We fit the P Cygni profiles using the SEI method applied to a spherically symmetric stellar wind subject to X-ray photoionization from the black hole. The Si IV doublet provides the most reliable estimates of the parameters of the wind and X-ray illumination. The velocity vv increases with radius rr according to v=v(1r/r)βv=v_\infty(1-r_\star/r)^\beta, withβ0.75\beta\approx0.75 and v1420v_\infty\approx1420 km s1^{-1}.The microturbulent velocity was 160\approx160 km s1^{-1}. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate of LX,38/M˙60.33_{X,38}/\dot M_{-6} \approx 0.33, measured at M˙6\dot M_{-6} = 4.8. Our models determine parameters that may be used to estimate the accretion rate onto the black hole and independently predict the X-ray luminosity. Our predicted Lx_x matches that determined by contemporaneous RXTE ASM remarkably well, but is a factor of 3 lower than the rate according to Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the energy of accretion may go into powering a jet.Comment: 34 pages, 21 figures, 4 tables, accepted for publication in Ap

    The X-shooter Lens Survey - II. Sample presentation and spatially resolved kinematics

    Get PDF
    We present the X-shooter Lens Survey (XLENS) data. The main goal of XLENS is to disentangle the stellar and dark matter content of massive early-type galaxies (ETGs), through combined strong gravitational lensing, dynamics and spectroscopic stellar population studies. The sample consists of 11 lens galaxies covering the redshift range from 0.10.1 to 0.450.45 and having stellar velocity dispersions between 250250 and 380kms1380\,\mathrm{km}\,\mathrm{s}^{-1}. All galaxies have multi-band, high-quality HST imaging. We have obtained long-slit spectra of the lens galaxies with X-shooter on the VLT. We are able to disentangle the dark and luminous mass components by combining lensing and extended kinematics data-sets, and we are also able to precisely constrain stellar mass-to-light ratios and infer the value of the low-mass cut-off of the IMF, by adding spectroscopic stellar population information. Our goal is to correlate these IMF parameters with ETG masses and investigate the relation between baryonic and non-baryonic matter during the mass assembly and structure formation processes. In this paper we provide an overview of the survey, highlighting its scientific motivations, main goals and techniques. We present the current sample, briefly describing the data reduction and analysis process, and we present the first results on spatially resolved kinematics.Comment: Accepted for publication in MNRA

    Possible evidence for an inverted temperature-density relation in the intergalactic medium from the flux distribution of the Lyman-alpha forest

    Get PDF
    We compare the improved measurement of the Lya forest flux probability distribution at 1.7<z<3.2 presented by Kim et al. (2007) to a large set of hydrodynamical simulations of the Lya forest with different cosmological parameters and thermal histories. The simulations are in good agreement with the observational data if the temperature-density relation for the low density intergalactic medium (IGM), T=T_0 Delta^{gamma-1}, is either close to isothermal or inverted (gamma<1). Our results suggest that the voids in the IGM may be significantly hotter and the thermal state of the low density IGM may be substantially more complex than is usually assumed at these redshifts. We discuss radiative transfer effects which alter the spectral shape of ionising radiation during the epoch of HeII reionisation as a possible physical mechanism for achieving an inverted temperature-density relation at z~3.Comment: 16 pages, 6 figures, accepted for publication in MNRAS following minor revision. The accepted version includes an expanded discussion of the flux power spectru

    Foreshock properties illuminate nucleation processes of slow and fast laboratory earthquakes

    Get PDF
    Laboratory experiments demonstrate that prior to fast laboratory earthquakes the fault begins to unlock and creep, causing foreshocks to coalesce in both space and time. This demonstrates that the evolution of foreshocks is closely connected to the fault slip velocity.Understanding the connection between seismic activity and the earthquake nucleation process is a fundamental goal in earthquake seismology with important implications for earthquake early warning systems and forecasting. We use high-resolution acoustic emission (AE) waveform measurements from laboratory stick-slip experiments that span a spectrum of slow to fast slip rates to probe spatiotemporal properties of laboratory foreshocks and nucleation processes. We measure waveform similarity and pairwise differential travel-times (DTT) between AEs throughout the seismic cycle. AEs broadcasted prior to slow labquakes have small DTT and high waveform similarity relative to fast labquakes. We show that during slow stick-slip, the fault never fully locks, and waveform similarity and pairwise differential travel times do not evolve throughout the seismic cycle. In contrast, fast laboratory earthquakes are preceded by a rapid increase in waveform similarity late in the seismic cycle and a reduction in differential travel times, indicating that AEs begin to coalesce as the fault slip velocity increases leading up to failure. These observations point to key differences in the nucleation process of slow and fast labquakes and suggest that the spatiotemporal evolution of laboratory foreshocks is linked to fault slip velocity

    The Optimal Gravitational Lens Telescope

    Get PDF
    Given an observed gravitational lens mirage produced by a foreground deflector (cf. galaxy, quasar, cluster,...), it is possible via numerical lens inversion to retrieve the real source image, taking full advantage of the magnifying power of the cosmic lens. This has been achieved in the past for several remarkable gravitational lens systems. Instead, we propose here to invert an observed multiply imaged source directly at the telescope using an ad-hoc optical instrument which is described in the present paper. Compared to the previous method, this should allow one to detect fainter source features as well as to use such an optimal gravitational lens telescope to explore even fainter objects located behind and near the lens. Laboratory and numerical experiments illustrate this new approach

    Crossover from Fermi liquid to Wigner molecule behavior in quantum dots

    Full text link
    The crossover from weak to strong correlations in parabolic quantum dots at zero magnetic field is studied by numerically exact path-integral Monte Carlo simulations for up to eight electrons. By the use of a multilevel blocking algorithm, the simulations are carried out free of the fermion sign problem. We obtain a universal crossover only governed by the density parameter rsr_s. For rs>rcr_s>r_c, the data are consistent with a Wigner molecule description, while for rs<rcr_s<r_c, Fermi liquid behavior is recovered. The crossover value rc4r_c \approx 4 is surprisingly small.Comment: 4 pages RevTeX, 3 figures, corrected Tabl

    Golden gravitational lensing systems from the Sloan Lens ACS Survey. I. SDSS J1538+5817: one lens for two sources

    Full text link
    We present a lensing and photometric study of the exceptional system SDSS J1538+5817, identified by the SLACS survey. The lens is a luminous elliptical at redshift z=0.143. Using HST public images in two different filters, the presence of two background sources lensed into an Einstein ring and a double system is ascertained. Our new spectroscopic observations, performed at the NOT, reveal that the two sources are located at the same redshift z=0.531. We investigate the total mass distribution of the lens between 1 and 4 kpc from the galaxy center by means of parametric and non-parametric lensing codes that describe the multiple images as point-like objects. Several disparate lensing models agree on: (1) reproducing accurately the observed image positions; (2) predicting a nearly axisymmetric total mass distribution, centered and oriented as the light distribution; (3) measuring a value of 8.11 x 10^{10} M_{Sun} for the total mass projected within the Einstein radius of 2.5 kpc; (4) estimating a total mass density profile slightly steeper than an isothermal one. A fit of the SDSS multicolor photometry with CSP models provides a value of 20 x 10^{10} M_{Sun} for the total stellar mass of the galaxy and of 0.9 for the fraction of projected luminous over total mass enclosed inside the Einstein radius. By combining lensing and photometric mass measurements, we differentiate the lens mass content in terms of luminous and dark matter components. This two-component modeling, which is viable only in extraordinary systems like SDSS J1538+5817, leads to a description of the global properties of the galaxy dark matter halo. Extending these results to a larger number of lenses would improve considerably our understanding of galaxy formation and evolution processes in the LCDM scenario.Comment: 21 pages, 16 figures, accepted by The Astrophysical Journa

    The high-frequency signature of slow and fast laboratory earthquakes

    Get PDF
    Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick-slip experiments were conducted at a constant loading rate of 8&nbsp;μm/s and the normal stress was systematically increased from 7 to 15&nbsp;MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5&nbsp;MHz. We demonstrate that the full continuum of slip modes radiate measurable high-frequency energy between 100 and 500&nbsp;kHz, including the slowest events that have peak fault slip rates &lt;100&nbsp;μm/s. The peak amplitude of the high-frequency time-domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high-frequency radiation. Experiments demonstrate that the origin of the high-frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes

    Using Stories in Coach Education

    Get PDF
    The purpose of this paper is to illustrate how storied representations of research can be used as an effective pedagogical tool in coach education. During a series of continuing professional development seminars for professional golf coaches, we presented our research in the form of stories and poems which were created in an effort to evoke and communicate the lived experiences of elite professional golfers. Following these presentations, we obtained written responses to the stories from 53 experienced coaches who attended the seminars. Analysis of this data revealed three ways in which coaches responded to the stories: (i) questioning; (ii) summarising; and (iii) incorporating. We conclude that these responses illustrate the potential of storied forms of representation to enhance professional development through stimulating reflective practice and increasing understanding of holistic, person-centred approaches to coaching athletes in high-performance sport
    corecore