research

Ultraviolet observations of the X-ray photoionized wind of Cygnus X-1 during X-ray soft/high state

Abstract

(Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features show strong, broad absorption components when the X-ray source is behind the companion star and noticeably weaker absorption when the X-ray source is between us and the companion star. We fit the P Cygni profiles using the SEI method applied to a spherically symmetric stellar wind subject to X-ray photoionization from the black hole. The Si IV doublet provides the most reliable estimates of the parameters of the wind and X-ray illumination. The velocity vv increases with radius rr according to v=v(1r/r)βv=v_\infty(1-r_\star/r)^\beta, withβ0.75\beta\approx0.75 and v1420v_\infty\approx1420 km s1^{-1}.The microturbulent velocity was 160\approx160 km s1^{-1}. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate of LX,38/M˙60.33_{X,38}/\dot M_{-6} \approx 0.33, measured at M˙6\dot M_{-6} = 4.8. Our models determine parameters that may be used to estimate the accretion rate onto the black hole and independently predict the X-ray luminosity. Our predicted Lx_x matches that determined by contemporaneous RXTE ASM remarkably well, but is a factor of 3 lower than the rate according to Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the energy of accretion may go into powering a jet.Comment: 34 pages, 21 figures, 4 tables, accepted for publication in Ap

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020