137,316 research outputs found

    Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design

    Get PDF
    Micro Porosity Sintered wick is made from metal injection molding processes, which provides a wick density with micro scale. It can keep more than 53 % working fluid inside the wick structure, and presents good pumping ability on working fluid transmission by fine infiltrated effect. Capillary pumping ability is the important factor in heat pipe design, and those general applications on wick structure are manufactured with groove type or screen type. Gravity affects capillary of these two types more than a sintered wick structure does, and mass heat transfer through vaporized working fluid determines the thermal performance of a vapor chamber. First of all, high density of porous wick supports high transmission ability of working fluid. The wick porosity is sintered in micro scale, which limits the bubble size while working fluid vaporizing on vapor section. Maximum heat transfer capacity increases dramatically as thermal resistance of wick decreases. This study on permeability design of wick structure is 0.5 - 0.7, especially permeability (R) = 0.5 can have the best performance, and its heat conductivity is 20 times to a heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Distributed Stochastic Optimization over Time-Varying Noisy Network

    Full text link
    This paper is concerned with distributed stochastic multi-agent optimization problem over a class of time-varying network with slowly decreasing communication noise effects. This paper considers the problem in composite optimization setting which is more general in noisy network optimization. It is noteworthy that existing methods for noisy network optimization are Euclidean projection based. We present two related different classes of non-Euclidean methods and investigate their convergence behavior. One is distributed stochastic composite mirror descent type method (DSCMD-N) which provides a more general algorithm framework than former works in this literature. As a counterpart, we also consider a composite dual averaging type method (DSCDA-N) for noisy network optimization. Some main error bounds for DSCMD-N and DSCDA-N are obtained. The trade-off among stepsizes, noise decreasing rates, convergence rates of algorithm is analyzed in detail. To the best of our knowledge, this is the first work to analyze and derive convergence rates of optimization algorithm in noisy network optimization. We show that an optimal rate of O(1/T)O(1/\sqrt{T}) in nonsmooth convex optimization can be obtained for proposed methods under appropriate communication noise condition. Moveover, convergence rates in different orders are comprehensively derived in both expectation convergence and high probability convergence sense.Comment: 27 page

    Volumetric pattern analysis of airborne antennas

    Get PDF
    By blending together the roll and elevation plane high frequency solutions, a very efficient technique was developed for the volumetric pattern analysis of antennas mounted on the fuselage of a generalized aircraft. The fuselage is simulated by an infinitely long, perfectly conducting, elliptic cylinder in cross-section and a composite elliptic cylinder in profile. The wings, nose section, stabilizers, and landing gear doors may be modeled by finite flat or bent plates. Good agreement with accurate scale model measurements was obtained for a variety of airborne antenna problems

    Money, moral transgressions, and blame

    No full text
    Two experiments tested participants' attributions for others' immoral behaviors when conducted for more versus less money. We hypothesized and found that observers would blame wrongdoers more when seeing a transgression enacted for little rather than a lot of money, and that this would be evident in observers' hand-washing behavior. Experiment 1 used a cognitive dissonance paradigm. Participants (N = 160) observed a confederate lie in exchange for either a relatively large or a small monetary payment. Participants blamed the liar more in the small (versus large) money condition. Participants (N = 184) in Experiment 2 saw images of someone knocking over another to obtain a small, medium, or large monetary sum. In the small (versus large) money condition, participants blamed the perpetrator (money) more. Hence, participants assigned less blame to moral wrong-doers, if the latter enacted their deed to obtain relatively large sums of money. Small amounts of money accentuate the immorality of others' transgressions

    Feedback of the electromagnetic environment on current and voltage fluctuations out of equilibrium

    Get PDF
    A theory is presented for low-frequency current and voltage correlators of a mesoscopic conductor embedded in a macroscopic electromagnetic environment. This Keldysh field theory evaluated at its saddle-point provides the microscopic justification for our earlier phenomenological calculation (using the cascaded Langevin approach). The nonlinear feedback from the environment mixes correlators of different orders, which explains the unexpected temperature dependence of the third moment of tunneling noise observed in a recent experiment. At non-zero temperature, current and voltage correlators of order three and higher are no longer linearly related. We show that a Hall bar measures voltage correlators in the longitudinal voltage and current correlators in the Hall voltage. We go beyond the saddle-point approximation to consider the environmental Coulomb blockade. We derive that the leading order Coulomb blockade correction to the n-th cumulant of current fluctuations is proportional to the voltage derivative of the (n+1)-th cumulant, generalizing to any n the earlier results for n=1,2.Comment: 12 pages, 8 figure

    High-Pressure Induced Structural Phase Transition in CaCrO4: Evidence from Raman Scattering Studies

    Full text link
    Raman spectroscopic studies have been carried out on CaCrO4 under pressure up to 26GPa at ambient temperature. The Raman spectra showed CaCrO4 experienced a continuous structural phase transition started at near 6GPa, and finished at about 10GPa. It is found that the high-pressure phase could be quenched to ambient conditions. Pressure dependence of the Raman peaks suggested there existed four pressure regions related to different structural characters. We discussed these characters and inferred that the nonreversible structural transition in CaCrO4, most likely was from a zircon-type (I41/amd) ambient phase to a scheelite-type high pressure structure (I41/a).Comment: submitte

    Temperature dependent third cumulant of tunneling noise

    Get PDF
    Poisson statistics predicts that the shot noise in a tunnel junction has a temperature independent third cumulant e^2\I, determined solely by the mean current I. Experimental data, however, show a puzzling temperature dependence. We demonstrate theoretically that the third cumulant becomes strongly temperature dependent and may even change sign as a result of feedback from the electromagnetic environment. In the limit of a noninvasive (zero-impedance) measurement circuit in thermal equilibrium with the junction, we find that the third cumulant crosses over from e^2/I at low temperatures to -e^2/I at high temperatures.Comment: 4 pages including 2 figure

    A New Approach to Linear/Nonlinear Distributed Fusion Estimation Problem

    Full text link
    Disturbance noises are always bounded in a practical system, while fusion estimation is to best utilize multiple sensor data containing noises for the purpose of estimating a quantity--a parameter or process. However, few results are focused on the information fusion estimation problem under bounded noises. In this paper, we study the distributed fusion estimation problem for linear time-varying systems and nonlinear systems with bounded noises, where the addressed noises do not provide any statistical information, and are unknown but bounded. When considering linear time-varying fusion systems with bounded noises, a new local Kalman-like estimator is designed such that the square error of the estimator is bounded as time goes to \infty. A novel constructive method is proposed to find an upper bound of fusion estimation error, then a convex optimization problem on the design of an optimal weighting fusion criterion is established in terms of linear matrix inequalities, which can be solved by standard software packages. Furthermore, according to the design method of linear time-varying fusion systems, each local nonlinear estimator is derived for nonlinear systems with bounded noises by using Taylor series expansion, and a corresponding distributed fusion criterion is obtained by solving a convex optimization problem. Finally, target tracking system and localization of a mobile robot are given to show the advantages and effectiveness of the proposed methods.Comment: 9 pages, 3 figure
    corecore