882 research outputs found

    Counterfactual Quantum Cryptography

    Full text link
    Quantum cryptography allows one to distribute a secret key between two remote parties using the fundamental principles of quantum mechanics. The well-known established paradigm for the quantum key distribution relies on the actual transmission of signal particle through a quantum channel. This paper shows that the task of a secret key distribution can be accomplished even though a particle carrying secret information is not in fact transmitted through the quantum channel. The proposed protocols can be implemented with current technologies and provide practical security advantages by eliminating the possibility that an eavesdropper can directly access the entire quantum system of each signal particle.Comment: 19 pages, 1 figure; a little ambiguity in the version 1 removed; abstract, text, references, and appendix revised; suggestions and comments are highly appreciate

    Many Rivers to Cross: Evaluating the Benefits and Limitations of Strategic Environmental Assessment for the Koshi River Basin

    Get PDF
    This paper assesses the value of using Strategic Environmental Assessment (SEA) to account for the spatially and temporally diverse and diffuse impacts of hydropower development in South Asia’s Koshi basin. A policy and practice review and key stakeholder interviews identified opportunities for SEA to improve existing planning procedures, but also barriers to effective adoption. Whilst stakeholders are interested in employing SEA to evaluate cumulative impacts, institutional blockages and an economic development imperative for power generation leave little space for consideration of alternative scenarios as part of SEA. The analysis is conducted through the formulation and application of a conceptual framework for SEA best practice which is then used to identify priority next-steps for SEA in the region

    Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Get PDF
    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates), natural (desert dust, sea salt) and chemically aged (sulphate and nitrate on dust) aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode) are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment). The sodium (sea salt related) aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region

    Methane and ethane emission scenarios for potential shale gas production in Europe

    Get PDF
    A main concern surrounding (shale) gas production and exploitation is the leakage of methane, a potent greenhouse gas. High leakage rates have been observed outside of Europe but the representativeness of these observations for Europe is unknown. To facilitate the monitoring of methane leakage from a future shale gas industry in Europe we developed potential production scenarios for ten major shale gas plays and identified a suitable tracer in (shale) gas to distinguish oil and gas related emissions from other methane sources. To distinguish gas leakage from other methane sources we propose ethane, a known tracer for leakage from oil and gas production but absent in emissions from other important methane sources in Europe. Ethane contents for the ten plays are estimated from a European gas composition database and shale gas composition and reservoir data from the US, resulting in three different classes of ethane to methane ratios in the raw gas (0.015, 0.04 and 0.1). The ethane content classes have a relation with the average thermal maturity, a basic shale gas reservoir characteristic, which is known for all ten European shale gas plays. By assuming different production scenarios in addition to a range of possible gas leakage rates, we estimate potential ethane tracer release by shale gas play. Ethane emissions are estimated by play following a low, medium or high gas production scenario in combination with leakage rates ranging from 0.2&thinsp;%–10&thinsp;% based on observed leakage rates in the US.</p

    Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign

    Get PDF
    PMCAMx-2008, a detailed three-dimensional chemical transport model (CTM), was applied to Europe to simulate the mass concentration and chemical composition of particulate matter (PM) during May 2008. The model includes a state-of-the-art organic aerosol module which is based on the volatility basis set framework treating both primary and secondary organic components as semivolatile and photochemically reactive. The model performance is evaluated against high time resolution aerosol mass spectrometer (AMS) ground and airborne measurements. Overall, organic aerosol is predicted to account for 32% of total PM&lt;sub&gt;1&lt;/sub&gt; at ground level during May 2008, followed by sulfate (30%), crustal material and sea-salt (14%), ammonium (13%), nitrate (7%), and elemental carbon (4%). The model predicts that fresh primary OA (POA) is a small contributor to organic PM concentrations in Europe during late spring, and that oxygenated species (oxidized primary and biogenic secondary) dominate the ambient OA. The Mediterranean region is the only area in Europe where sulfate concentrations are predicted to be much higher than the OA, while organic matter is predicted to be the dominant PM&lt;sub&gt;1&lt;/sub&gt; species in central and northern Europe. The comparison of the model predictions with the ground measurements in four measurement stations is encouraging. The model reproduces more than 94% of the daily averaged data and more than 87% of the hourly data within a factor of 2 for PM&lt;sub&gt;1&lt;/sub&gt; OA. The model tends to predict relatively flat diurnal profiles for PM&lt;sub&gt;1&lt;/sub&gt; OA in many areas, both rural and urban in agreement with the available measurements. The model performance against the high time resolution airborne measurements at multiple altitudes and locations is as good as its performance against the ground level hourly measurements. There is no evidence of missing sources of OA aloft over Europe during this period

    Health monitoring in composite structures using piezoceramic sensors and fiber optic sensors

    Get PDF
    Abstract: Health monitoring is a major concern not only in the design and manufacturing but also in service stages for composite laminated structures. Excessive loads or low velocity impact can cause matrix cracks and delaminations that may severely degrade the load carrying capability of the composite laminated structures. To develop the health monitoring techniques providing on-line diagnostics of smart composite structures can be helpful in keeping the composite structures sound during their service. In this presentation, we discuss the signal processing techniques and some applications for health monitoring of composite structures using piezoceramic sensors and fiber optic sensors

    Constraining Fossil Fuel CO2 Emissions From Urban Area Using OCO‐2 Observations of Total Column CO2

    Full text link
    Satellite observations of the total column dry‐air CO2 (XCO2) are expected to support the quantification and monitoring of fossil fuel CO2 (ffCO2) emissions from urban areas. We evaluate the utility of the Orbiting Carbon Observatory 2 (OCO‐2) XCO2 retrievals to optimize whole‐city emissions, using a Bayesian inversion system and high‐resolution transport modeling. The uncertainties of constrained emissions related to transport model, satellite measurements, and local biospheric fluxes are quantified. For the first two uncertainty sources, we examine cities of different landscapes: “plume city” located in relatively flat terrain, represented by Riyadh and Cairo; and “basin city” located in basin terrain, represented by Los Angeles (LA). The retrieved scaling factors of emissions and their uncertainties show prominent variabilities from track to track, due to the varying meteorological conditions and relative locations of the tracks transecting plumes. To explore the performance of multiple tracks in retrieving emissions, pseudo data experiments are carried out. The estimated least numbers of tracks required to constrain the total emissions for Riyadh (<10% uncertainty), Cairo (<10%), and LA (<5%) are 8, 5, and 7, respectively. Additionally, to evaluate the impact of biospheric fluxes on derivation of the ffXCO2 enhancements, we conduct simulations for Pearl River Delta metropolitan area. Significant fractions of local XCO2 enhancements associated with local biospheric XCO2 variations are shown, which potentially lead to biased estimates of ffCO2 emissions. We demonstrate that satellite measurements can be used to improve urban ffCO2 emissions with a sufficient amount of measurements and appropriate representations of the uncertainty components.Key PointsInversion method is utilized to constrain whole‐city fossil fuel emissions with measurement and transport model errors consideredPotential of incorporating multiple tracks to obtain regular emission estimates is evaluated by pseudo data experimentsSignificant contribution of the biospheric fluxes variability to local XCO2 variation is demonstratedPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154979/1/jgrd56150_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154979/2/jgrd56150.pd

    Early combination versus initial metformin monotherapy in the management of newly diagnosed type 2 diabetes : An East Asian perspective

    Get PDF
    Type 2 diabetes (T2D) in the East Asian population is characterized by phenotypes such as low body mass index, an index of beta-cell dysfunction, and higher percentage of body fat, an index of insulin resistance. These phenotypes/pathologies may predispose people to early onset of diabetes with increased risk of stroke and renal disease. Less than 50% of patients with T2D in East Asia achieve glycaemic targets recommended by national or regional guidelines, which may be attributable to knowledge and/or implementation gaps. Herein, we review the latest evidence with special reference to East Asian patients with T2D and present arguments for the need to use early combination therapy to intensify glycaemic control. This strategy is supported by the 5-year worldwide VERIFY study, which reported better glycaemic durability in newly diagnosed patients with T2D with a mean HbA1c of 6.9% treated with early combination therapy of vildagliptin plus metformin versus those treated with initial metformin monotherapy followed by addition of vildagliptin only with worsening glycaemic control. This paradigm shift of early intensified treatment is now recommended by the American Diabetes Association and the European Association for the Study of Diabetes. In order to translate these evidence to practice, increased awareness and strengthening of the healthcare system are needed to diagnose and manage patients with T2D early for combination therapy.Peer reviewe

    Intercomparison of detection and quantification methods for methane emissions from the natural gas distribution network in Hamburg, Germany

    Get PDF
    In August and September 2020, three different measurement methods for quantifying methane (CH4) emissions from leaks in urban gas distribution networks were applied and compared in Hamburg, Germany: the “mobile”, “tracer release”, and “suction” methods. The mobile and tracer release methods determine emission rates to the atmosphere from measurements of CH4 mole fractions in the ambient air, and the tracer release method also includes measurement of a gaseous tracer. The suction method determines emission rates by pumping air out of the ground using soil probes that are placed above the suspected leak location. The quantitative intercomparison of the emission rates from the three methods at a small number of locations is challenging because of limitations of the different methods at different types of leak locations. The mobile method was designed to rapidly quantify the average or total emission rate of many gas leaks in a city, but it yields a large emission rate uncertainty for individual leak locations. Emission rates determined for individual leak locations with the tracer release technique are more precise because the simultaneous measurement of the tracer released at a known rate at the emission source eliminates many of the uncertainties encountered with the mobile method. Nevertheless, care must be taken to properly collocate the tracer release and the leak emission points to avoid biases in emission rate estimates. The suction method could not be completed or applied at locations with widespread subsurface CH4 accumulation or due to safety measures. While the number of gas leak locations in this study is small, we observe a correlation between leak emission rate and subsurface accumulation. Wide accumulation places leaks into a safety category that requires immediate repair so that the suction method cannot be applied to these larger leaks in routine operation. This introduces a sampling bias for the suction method in this study towards the low-emission leaks, which do not require immediate repair measures. Given that this study is based on random sampling, such a sampling bias may also exist for the suction method outside of this study. While an investigation of the causal relationship between safety category and leak size is beyond the scope of this study, on average higher emission rates were observed from all three measurement-based quantification methods for leaks with higher safety priority compared to the leaks with lower safety concern. The leak locations where the suction method could not be applied were the biggest emitters, as confirmed by the emission rate quantifications using mobile and tracer methods and an engineering method based on the leak's diameter, pipeline overpressure, and depth at which the pipeline is buried. The corresponding sampling bias for the suction technique led to a low bias in derived emission rates in this study. It is important that future studies using the suction method account for any leaks not quantifiable with this method in order to avoid biases, especially when used to inform emission inventories.</p
    corecore