3,899 research outputs found
The transmission or scattering of elastic waves by an inhomogeneity of simple geometry: A comparison of theories
The extended method of equivalent inclusion developed is applied to study the specific wave problems of the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and of the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. The eigenstrains are expanded as a geometric series and the method of integration for the inhomogeneous Helmholtz operator given by Fu and Mura is adopted. The results obtained by using a limited number of terms in the eigenstrain expansion are compared with exact solutions for the layer problem and for a perfect sphere. Two parameters are singled out for this comparison: the ratio of elastic moduli, and the ratio of the mass densities. General trends for three different situations are shown
Data catalog series for space science and applications flight missions. Volume 4A: Descriptions of meteorological and terrestrial applications spacecraft and investigations
The National Space Science Data Center (NSSDC) provides data from and information about space science and applications flight investigations in support of additional studies beyond those performed as the principal part of any flight mission. The Earth-orbiting spacecraft for investigations of the earth and its atmosphere is discussed. Geodetic tracking data are included in this category. The principal subject areas presented are meteorology and earth resources survey, and the spacecraft selection is made according to those subjects. All experiments on board the spacecraft are described. No attempt is made to reference investigations that are related to the above disciplines, but that are described in other volumes of this series
Pass-Through And The Prediction Of Merger Price Effects
We use Monte Carlo experiments to study how pass-through can improve merger price predictions, focusing on the first order approximation (FOA) proposed in Jaffe and Weyl [2013]. FOA addresses the functional form misspecification that can exist in standard merger simulations. We find that the predictions of FOA are tightly distributed around the true price effects if pass-through is precise, but that measurement error in pass-through diminishes accuracy. As a comparison to FOA, we also study a methodology that uses pass-through to select among functional forms for use in simulation. This alternative also increases accuracy relative to standard merger simulation and proves more robust to measurement error
Upward Pricing Pressure As A Predictor Of Merger Price Effects
We use Monte Carlo experiments to evaluate whether “upward pricing pressure” (UPP) accurately predicts the price effects of mergers, motivated by the observation that UPP is a restricted form of the first order approximation derived in Jaffe and Weyl (2013). Results indicate that UPP is quite accurate with standard log-concave demand systems, but understates price effects if demand exhibits greater convexity. Prediction error does not systematically exceed that of misspecified simulation models, nor is it much greater than that of correctly-specified models simulated with imprecise demand elasticities. The results also support that UPP provides accurate screens for anticompetitive mergers
Antisite effect on ferromagnetism in (Ga,Mn)As
We study the Curie temperature and hole density of (Ga,Mn)As while
systematically varying the As-antisite density. Hole compensation by
As-antisites limits the Curie temperature and can completely quench long-range
ferromagnetic order in the low doping regime of 1-2% Mn. Samples are grown by
molecular beam epitaxy without substrate rotation in order to smoothly vary the
As to Ga flux ratio across a single wafer. This technique allows for a
systematic study of the effect of As stoichiometry on the structural,
electronic, and magnetic properties of (Ga,Mn)As. For concentrations less than
1.5% Mn, a strong deviation from Tc ~ p^0.33 is observed. Our results emphasize
that proper control of As-antisite compensation is critical for controlling the
Curie temperatures in (Ga,Mn)As at the low doping limit.Comment: 10 pages, 7 figure
Free-carrier relaxation and lattice heating in photoexcited bismuth thin films
We report ultrafast surface pump and interface probe experiments on
photoexcited carrier transport across single crystal bismuth films on sapphire.
The film thickness is sufficient to separate carrier dynamics from lattice
heating and strain, allowing us to investigate the time-scales of momentum
relaxation, heat transfer to the lattice and electron-hole recombination. The
measured electron-hole () recombination time is 12--26 ps and ambipolar
diffusivity is 18--40 cm/s for carrier excitation up to . By comparing the heating of the front and back sides of the
film, we put lower limits on the rate of heat transfer to the lattice, and by
observing the decay of the plasma at the back of the film, we estimate the
timescale of electron-hole recombination. We interpret each of these timescales
within a common framework of electron-phonon scattering and find qualitative
agreement between the various relaxation times observed. We find that the
carrier density is not determined by the plasma temperature after a few
picoseconds. The diffusion and recombination become nonlinear with initial
excitation
Fundamentals of microcrack nucleation mechanics
A foundation for ultrasonic evaluation of microcrack nucleation mechanics is identified in order to establish a basis for correlations between plane strain fracture toughness and ultrasonic factors through the interaction of elastic waves with material microstructures. Since microcracking is the origin of (brittle) fracture, it is appropriate to consider the role of stress waves in the dynamics of microcracking. Therefore, the following topics are discussed: (1) microstress distributions with typical microstructural defects located in the stress field; (2) elastic wave scattering from various idealized defects; and (3) dynamic effective-properties of media with randomly distributed inhomogeneities
Prediction of strong shock structure using the bimodal distribution function
A modified Mott-Smith method for predicting the one-dimensional shock wave
solution at very high Mach numbers is constructed by developing a system of
fluid dynamic equations. The predicted shock solutions in a gas of Maxwell
molecules, a hard sphere gas and in argon using the newly proposed formalism
are compared with the experimental data, direct-simulation Monte Carlo (DSMC)
solution and other solutions computed from some existing theories for Mach
numbers M<50. In the limit of an infinitely large Mach number, the predicted
shock profiles are also compared with the DSMC solution. The density,
temperature and heat flux profiles calculated at different Mach numbers have
been shown to have good agreement with the experimental and DSMC solutionsComment: 22 pages, 9 figures, Accepted for publication in Physical Review
- …
