48 research outputs found

    High-throughput comparison, functional annotation, and metabolic modeling of plant genomes using the PlantSEED resource

    Get PDF
    The increasing number of sequenced plant genomes is placing new demands on the methods applied to analyze, annotate, and model these genomes. Today's annotation pipelines result in inconsistent gene assignments that complicate comparative analyses and prevent efficient construction of metabolic models. To overcome these problems, we have developed the PlantSEED, an integrated, metabolism-centric database to support subsystems-based annotation and metabolic model reconstruction for plant genomes. PlantSEED combines SEED subsystems technology, first developed for microbial genomes, with refined protein families and biochemical data to assign fully consistent functional annotations to orthologous genes, particularly those encoding primary metabolic pathways. Seamless integration with its parent, the prokaryotic SEED database, makes PlantSEED a unique environment for cross-kingdom comparative analysis of plant and bacterial genomes. The consistent annotations imposed by PlantSEED permit rapid reconstruction and modeling of primary metabolism for all plant genomes in the database. This feature opens the unique possibility of model-based assessment of the completeness and accuracy of gene annotation and thus allows computational identification of genes and pathways that are restricted to certain genomes or need better curation. We demonstrate the PlantSEED system by producing consistent annotations for 10 reference genomes. We also produce a functioning metabolic model for each genome, gapfilling to identify missing annotations and proposing gene candidates for missing annotations. Models are built around an extended biomass composition representing the most comprehensive published to date. To our knowledge, our models are the first to be published for seven of the genomes analyzed

    Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.

    No full text
    Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5D mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes

    Mechanistic and structural insights into the specificity and biological functions of bacterial sulfoglycosidases

    No full text
    Glycan sulfation is an important modification supporting the functionalities of many proteins in biology. Exo-acting 6S-GlcNAcases from human microbiota are glycosidases that participate in the removal of 6-sulfo-GlcNAc from host glycans and thereby play an important role in human health and disease. Nonetheless, mechanisms underlying their ability to recognize the sulfate group remain poorly understood. Using structural and kinetic analyses, we here reveal the catalytically important amino acids directly involved in the recognition and cleavage of 6S-GlcNAc, but not of 6-phospho-GlcNAc, in BbhII from Bifidobacterium bifidum, Bt4394 from Bacteroides thetaiotaomicron, and SGL from Prevotella spp. The defining features of their sulfate recognition motifs underpin a genomic enzymological exploration of 6S-GlcNAcases to identify a wider range of human health-associated bacterial species having 6S-GlcNAcase activity. Our data provide significant insights into distinct molecular mechanisms of sulfated sugar recognition employed by 6S-GlcNAcases from both Gram-positive and Gram-negative bacteria along with valuable information for the exploration of extensive interactions between microbiota and their host glycans

    Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens

    No full text
    International audienceQueuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients

    Cancer Immunotherapy with Anti-CTLA-4 Monoclonal Antibodies Induces an Inflammatory Bowel Disease

    Get PDF
    International audienceTherapeutic monoclonal anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) antibodies are associated with immune-mediated enterocolitis. The aim of this study was to provide a detailed description of this entity. We included patients with endoscopic signs of inflammation after anti-CTLA-4 infusions for cancer treatment. Other causes of enterocolitis were excluded. Clinical, biological and endoscopic data were recorded. A single pathologist reviewed endoscopic biopsies and colectomy specimens from 27 patients. Patients with and without enterocolitis after ipilimumab-treated melanoma were compared, to identify clinical factors associated with enterocolitis. Thirty-nine patients with anti-CTLA-4 enterocolitis were included (ipilimumab <n = 37; tremelimumab <n = 2). The most frequent symptom was diarrhoea. Ten patients had extra-intestinal manifestations. Most colonoscopies showed ulcerations involving the rectum and sigmoid, 66% of patients had extensive colitis, 55% had patchy distribution and 20% had ileal inflammation. Endoscopic colonic biopsies showed acute colitis in most patients, while half of the patients had chronic duodenitis. Thirty-five patients received steroids that led to complete clinical remission in 13 patients (37%). Twelve patients required infliximab, of whom 10 (83%) responded. Six patients underwent colectomy (perforation <n = 5; toxic megacolon <n = 1); one of them died postoperatively. Four patients had a persistent enterocolitis at follow-up colonoscopy. Patients with enterocolitis were more frequently prescribed NSAIDs compared with patients without enterocolitis (31 vs 5%, <p = 0.003). Ipilimumab and tremelimumab may induce a severe and extensive form of inflammatory bowel disease. Rapid escalation to infliximab should be advocated in patients who do not respond to steroids. Patients treated with anti-CTLA-4 should be advised to avoid NSAIDs
    corecore