1,120 research outputs found

    ADAPS: Autonomous Driving Via Principled Simulations

    Full text link
    Autonomous driving has gained significant advancements in recent years. However, obtaining a robust control policy for driving remains challenging as it requires training data from a variety of scenarios, including rare situations (e.g., accidents), an effective policy architecture, and an efficient learning mechanism. We propose ADAPS for producing robust control policies for autonomous vehicles. ADAPS consists of two simulation platforms in generating and analyzing accidents to automatically produce labeled training data, and a memory-enabled hierarchical control policy. Additionally, ADAPS offers a more efficient online learning mechanism that reduces the number of iterations required in learning compared to existing methods such as DAGGER. We present both theoretical and experimental results. The latter are produced in simulated environments, where qualitative and quantitative results are generated to demonstrate the benefits of ADAPS.Comment: Accepted to ICRA201

    WarpDriver: context-aware probabilistic motion prediction for crowd simulation

    Get PDF
    Microscopic crowd simulators rely on models of local interaction (e.g. collision avoidance) to synthesize the individual motion of each virtual agent. The quality of the resulting motions heavily depends on this component, which has significantly improved in the past few years. Recent advances have been in particular due to the introduction of a short-horizon motion prediction strategy that enables anticipated motion adaptation during local interactions among agents. However, the simplicity of prediction techniques of existing models somewhat limits their domain of validity. In this paper, our key objective is to significantly improve the quality of simulations by expanding the applicable range of motion predictions. To this end, we present a novel local interaction algorithm with a new context-aware, probabilistic motion prediction model. By context-aware, we mean that this approach allows crowd simulators to account for many factors, such as the influence of environment layouts or in-progress interactions among agents, and has the ability to simultaneously maintain several possible alternate scenarios for future motions and to cope with uncertainties on sensing and other agent's motions. Technically, this model introduces "collision probability fields" between agents, efficiently computed through the cumulative application of Warp Operators on a source Intrinsic Field. We demonstrate how this model significantly improves the quality of simulated motions in challenging scenarios, such as dense crowds and complex environments

    Polarimetric variations of binary stars. V. Pre-main-sequence spectroscopic binaries located in Ophiuchus and Scorpius

    Get PDF
    We present polarimetric observations of 7 pre-main-sequence (PMS) spectroscopic binaries located in the rho Oph and Upper Sco star forming regions (SFRs). The average observed polarizations at 7660A are between 0.5% and 3.5%. After estimates of the interstellar polarization are removed, all binaries have an intrinsic polarization above 0.4%. Two binaries, NTTS162814-2427 and NTTS162819-2423S, present high levels of intrinsic polarization between 1.5% and 2.1%. All 7 PMS binaries have a statistically variable or possibly variable polarization. Combining these results with our previous sample of binaries located in the Tau, Aur and Ori SFRs, 68% of the binaries have an intrinsic polarization above 0.5%, and 90% of the binaries are polarimetrically variable or possibly variable. NTTS160814-1857, NTTS162814-2427, and NTTS162819-2423S are clearly polarimetrically variable. The first two also exhibit phase-locked variations over ~10 and ~40 orbits respectively. NTTS160905-1859 shows periodic variations that are not phased-locked and only present for short intervals of time. The amplitudes of the variations reach a few tenths of a percent. The high-eccentricity system NTTS162814-2427 shows single-periodic variations, in agreement with our previous numerical simulations. Non-periodic events introduce stochastic noise that partially masks the periodic variations and prevents the Brown, McLean, & Emslie (1978) formalism from finding a reasonable estimate of the inclination.Comment: 63 pages, including 21 figures and 18 tables, accepted by A

    Temperature-Frequency Converter Using a Liquid Crystal Cell as a Sensing Element

    Get PDF
    A new temperature-frequency converter based on the variation of the dielectric permittivity of the Liquid Crystal (LC) material with temperature has been demonstrated. Unlike other temperature sensors based on liquid crystal processing optical signals for determining the temperature, this work presents a system that is able to sense temperature by using only electrical signals. The variation of the dielectric permittivity with temperature is used to modify the capacitance of a plain capacitor using a LC material as non-ideal dielectric. An electric oscillator with an output frequency depending on variable capacitance made of a twisted-nematic (TN) liquid crystal (LC) cell has been built. The output frequency is related to the temperature of LC cell through the equations associated to the oscillator circuit. The experimental results show excellent temperature sensitivity, with a variation of 0.40% of the initial frequency per degree Celsius in the temperature range from −6 °C to 110 °C

    Synthetic and computational studies on the tricarboxylate core of 6,7-dideoxysqualestatin H5 involving a carbonyl ylide cycloaddition–rearrangement

    Get PDF
    Reaction of diazodiketoesters 17 and 28 with methyl glyoxylate in the presence of catalytic rhodium(II) acetate generates predominantly the 6,8-dioxabicyclo[3.2.1]octanes 29 and 30, respectively. Acid-catalysed rearrangement of the corresponding alcohol 31 favours, at equilibrium, the 2,8-dioxabicyclo[3.2.1]octane skeleton 33 of the squalestatins–zaragozic acids. Force field calculations on the position of the equilibrium gave misleading results. DFT calculations were correct in suggesting that the energy difference between 31 and 33 should be small, but did not always suggest the right major product. Calculation of the NMR spectra of the similar structures could be used to assign the isomers with a high level of confidence

    The Effect of Multiple Scattering on the Polarization from Binary Star Envelopes. I. Self- and Externally Illuminated Disks

    Full text link
    We present the results of a Monte Carlo radiative transfer code that calculates the polarization produced by multiple Thomson scattering and variable absorptive opacity in a circumstellar disk around one component of a close detached binary system. We consider in detail the polarization variations over the binary cycle that result from the disk's illumination by the external star and by its own volume emission. We identify key features of these polarization phase curves and investigate their behavior as functions of optical depth, albedo, and inclination for geometrically thin and thick disks. The polarization due to disk self-illumination is sensitive to the internal optical characteristics of the disk, while the polarization arising from external illumination is mainly sensitive to the disk's geometrical thickness. With appropriate flux weighting, these results, combined with those for an internally illuminated disk, allow simulation of the polarization signature from an arbitrary binary-disk system.Comment: 34 pages, 17 figures. Submitted to ApJ, revised in response to referee comments. Color figures available from http://www.ruf.rice.edu/~jhoffman/monte/colorfigs.htm

    Polarimetric variations of binary stars. IV. Pre-main-sequence spectroscopic binaries located in Taurus, Auriga, and Orion

    Full text link
    We present polarimetric observations of 14 pre-main-sequence (PMS) binaries located in the Taurus, Auriga, and Orion star forming regions. The majority of the average observed polarizations are below 0.5%, and none are above 0.9%. After removal of estimates of the interstellar polarization, about half the binaries have an intrinsic polarization above 0.5%, even though most of them do not present other evidences for the presence of circumstellar dust. Various tests reveal that 77% of the PMS binaries have or possibly have a variable polarization. LkCa3, Par1540, and Par2494 present detectable periodic and phase-locked variations. The periodic polarimetric variations are noisier and of a lesser amplitude (~0.1%) than for other types of binaries, such as hot stars. This could be due to stochastic events that produce deviations in the average polarization, a non-favorable geometry (circumbinary envelope), or the nature of the scatterers (dust grains are less efficient polarizers than electrons). Par1540 is a Weak-line TTauri Star, but nonetheless has enough dust in its environment to produce detectable levels of polarization and variations. A fourth interesting case is W134, which displays rapid changes in polarization that could be due to eclipses. We compare the observations with some of our numerical simulations, and also show that an analysis of the periodic polarimetric variations with the Brown, McLean, & Emslie (BME) formalism to find the orbital inclination is for the moment premature: non-periodic events introduce stochastic noise that partially masks the periodic low-amplitude variations and prevents the BME formalism from finding a reasonable estimate of the orbital inclination.Comment: 70 pages, 20 figures, to be published in the Astronomical Journa
    • …
    corecore