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Abstract 

In this paper we investigate the performance of platform FPGAs on a compute-intensive, jloating-point-intensive super- 
computing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles 
through time by integrating their equations of motion. 

One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I ]  and mapped onto several recon- 
figurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract tech- 
nology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators[4] 
so that the design could be easily re-targeted. Experiments were performed using both non-pipelined and pipelined floating 
point modules. 

We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and 
the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz( Altera Strath EPlS80), and 4.47 
GFlops at 82 MHz {Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a 
4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance 
at low power on jloating-point-intensive applications. 

1 Introduction 

The goal of our work is to evaluate the performance of modern reconfigurable logic arrays on compute-intensive, floating- 
point-intensive algorithms. The algorithm chosen, Molecular Dynamics, is a computer simulation technique whereby the 
time-varying interactions of particles are followed by computing each particle's equations of motion. 

In the realm of Molecular Dynamics (MD), simulation is a common computational technique used in the physical sciences 
to bridge the gap between the individual and collective properties of atoms[9]. It is possible to write down a description of the 
forces between atoms as a function of their separation, but there are no analytical methods for extrapolating this information 
to predict the properties of for instance a protein. This problem is dealt with by solving the classical equations of motion for 
the atoms using numerical methods.' 

In this work, we used Mindy[2], a simulation code for sequential computers developed by the University of Illinois. Mindy 
can be used to study the interactions of large biomolecular systems. 

I 2 Related Work 

Molecular Dynamics 

Application of the MD method has always been constrained by the limitations imposed by computational speed constraints. 
In the late seventies and eighties, most of the then cutting-edge work was carried out on the Cray series of supercomputers, as 
the MD problem is inherently vectorizable. Some initial work was carried out to map the problem onto parallel architectures 

?. 

'There are also approaches based on quantum mechanics but these are not considered here. 



such as the ICL DAP, and the Thinking Machines CM-5. With the advent of fast workstations, some of this work moved to 
RISC processors, and currently the approach is to use clusters of commodity RISC processors connected with low latency 
network connections. One of the limitations of the cluster approach is the requirement that the nodes must communicate the 
positions of the particles on a regular basis, and this has led to application specific coarse-graining of the algorithm. 

Another approach that continues to be tried is the development of application specific integrated circuits (ASICs), but 
these suffer from the problem of almost instant obsolescence and high cost. A current example is the Molecular Dynamics 
Machine at the Institute of Physical and Chemical Research (RIKEN) in Japan, which was developed in conjunction with 
IBM[7]. 

The ultimate goal of our work is to gain a significant fraction the performance of an ASIC, without the prohibitively high 
cost and inherent obsolescence of that approach. 

Floating Point on Reconiigurable Computers 

In the realm of floating point implemented on reconfigurable logic, there has been considerable interest in obtaining efficient 
floating point performance on reconfigurable computers (RC). Data intensive signal and image processing applications, which 
have been successfully mapped to RC, are usually developed in floating point, and it has been necessary to translate to fixed 
point in order to obtain high performance on RC. An early study [8] revealed that customized floating point representations 
could be efficiently be implemented on RC, but that standard representations consumed excessive area and/or time. More 
recent evaluation [3] has demonstrated 95 MHops floating point multiplication on Xilinx Virtex E using a format optimized 
for DSP calculations. A proprietary floating point library for the Xilinx [6] shows average performance of 180 MFLOPS 
for IEEE-754-compliant variable wordlength floating point arithmetic cores. However, when floating point is just one aspect 
of a complex application, the results may not bear out as well. For example, [5] concludes that “despite the sophistication 
of today’s FPGA architecture and EDA tools, floating-point precision is still not feasible in FPGA-based Artificiel Neural 
Networks.” 

Thus the purpose of our study is not only to quantify the performance of floating point operators, but to examine the 
performance of a complex floating-point-intensive application on reconfigurable computers. 

3 Molecular Dynamic Algorithm 

The MD method is based on a repetitive process to solve the equations of motion for typically up to a few million atoms 
in simple systems, and tens of thousands of atoms in the more complex simulations of solvated proteins and model biological 
membranes. A variety of interatomic potentials are used, and these typically encompass a short-range repulsive term, medium 
range attractive term, and a long-range electrostatic component. The heart of the calculation requires that 

0 all permutations of the interatomic distances be calculated, 

e the forces evaluated from the analytical interatomic potentials, and 

0 a net force calculated on each atom reflecting its interaction with the surroundings. 

This net force is then used in a predictor corrector algorithm to move the positions of the particles forward in time by a small 
timestep, 6t. This timestep is typically small and on the order of a femtosecond as the algorithm does not take into account 
the fact that all of the other atoms move at the same time, which in turn changes the forces on each atom. A typical finite 
difference method used for the integration step (predictor corrector) is the Verlet algorithm: 

~ i ( t  + At) = % ~ i ( t )  - ~ i ( t  - At)  + ~ i ( t )  x At2 (1) 

where ~ ( t )  is the position of particle i at time t, and ai(t) is the net force on atom i at time t arising from all of the 
other atoms. This is equation is usually applied in two half steps, where the positions @) and velocities (u) are incremented, 
fpllowed by a calculation of the forces at the new position, an finally an update of the velocities as shown in Equations 2 
through 4: 



calculation of forces at new positions, ~i (t + At)  

~ i ( t  + At)  = ~ i f t  + 1/2 x At) + 1/2At x ~ ( t  + At) (4) 

Although the calculation of the forces is the most compute intensive part of the calculation, it is also the most complicated. 
The full MD algorithm requires features such as periodic boundary conditions, nearest image convention, neighborhood 
tables, with an escalating complexity as the size of the problem increases. We anticipate that the traditional MD algorithms 
will need to be adapted to the WGA architecture, and so a direct comparison with conventional microprocessors is non- 
trivial. As this is a floating point intensive code, our initial work has evaluated the effectiveness of a FPGA to carry out the 
Verlet algorithm, which encompasses some of the typical computational effort required in a molecular dynamics loop. 

4 Polymorphous Comgmting Fabric and Fabric Generator Toolset 

In this study, we wanted to eKperiment with different implementations on different technologies. In order to easily generate 
and evaluate many varialions of the basic algorithm, we used the notion of a polymorphous fabric [lo], a cellular array with 
regular communication patterns both within the array as well as to an attached processor. Each version of the algorithm 
was designed as a “fabric” consisting of simple, inter-connected computational datapath cells, each with an optional local 
memory. 

In our model, the collection of local memories forms a (dual-ported) global memory that can be loaded and examined 
from the attached processor on the SoPC. The cells composing the fabric need not all be the same - a fabric may contain 
groups of homogeneous cells, as illustrated in Figure 1, in which different cell types are distinguished by different names 
(“Send,” “Rec,” “P,”, and “Ele”). Each datapath cell may have its own controller, or alternatively, a group of identical cells 
may share a controller. Many different sorts of communications patterns may be realized within a single fabric. The fabric 
can be considered as a processing memory and presents a standard memory to the embedded processor. 

I 

Figure 1. Example Fabrics 
i. 

We have built a Fabric Generator FG [ 1 1 J to help accelerating construction of the fabrics. The FG library contains classes 

0 define a module 

to 



for (j=O; j-matoms; j++) 
{ 
pos[jl += dt*veltjl + 0.5*dt*dt*f [jl*imass[jl; 
vel[jl += 0.5*dt*f[jl*imass[j]; 

1 

Figure 2. C code for Verlet Algorithm 

0 create a datapath of interconnected modules 

0 instantiate cells consisting of datapaths with associated sequencers 

0 create a fabric of interconnected cells 

The fabric designer writes a Java program and calls methods provided by the library to define and instantiate modules. 
In addition, modules may be defined in VHDL using technology-specific components, if desired, and instantiated in the 
fabric program. Modules can be instantiated to build a datapath. Next, cells may be defined. A cell contains a datapath 
and specifies a sequencer (controller). Cells may share a sequencer (SIMD mode) or each cell may have a unique sequencer 
(MIMD mode). A fabric contains a collection of cells and sequencers. The fabric program calls a method to generate a 
sequencer description file. After the fabric designer has microcoded a low level control sequence for a datapath, an assembler 
generates a state machine . The Controllers, Fabric, and Datapaths in the Figure are then synthesized through the standard 
CAD tool chain. The result is a component with standard memory interface which can be connected to any processor. 

5 Reconfigurable Computer Implementation 

Figure 2 shows the Mindy [2] loop computing equations 3 and4. Our first step was to tile the loop so that each "pr~~essor' '  
on the RC computes a subset of the atom positions and velocities. The tiled version of the loop is shown in Figure 3. 

int M = natoms/N; where N is a number of cells 
for ( b o ;  i<N-1; i++) 

( 

for (j=O; j<M-l; j++) 
{ 
k = M*i+j; 
pos[k] += dt*vel[k] + dt*f[k]*M[kl; where M [ k l = O  
vel tkl += f Ikl *Mlkl ; 

3 
1 

I 

5*dt*imass [kl 

Figure 3. Tiled Verlet Loop 

Using the FG toolset, two fabrics were initially implemented on the Altera Excalibur ARM (see 4), both utilizing multi- 
cycle IEEE 32-bit floating point modules. One fabric uses non-pipelined floating point modules, while the second uses 
pipelined modules. In this experiment we wanted to find out which fabric has a better performance/space ratio. 

Each fabric is composed of a collection of N cells, and each cell realizes the inner loop from figure 3 for M number 
of atoms. By virtue of the fabric model, on the Altera Excalibur ARM, the ARM processor has direct access to all data 
memories. 

Since each computational pipeline is independent, communication channels between cells are not required for either 
design. In the case of the first fabric, each cell has separated controller because the stop signals emitted by the non-pipelined 
adders are asynchronous between cells, and thus must be caught by each cell's controller. For the second fabric, since the 
floating point modules are synchronized, a single controller can be used for all the cells. 

Figure 4 shows the data-path of each fabric. In data path 1, the registers A, B, C, D and E are used to enable the pipelined 
execution of the graph composed of non-pipelined multi-cycles floating points modules. The module synch in data-path 
1 synchronizes the stop signals coming from the floating point adders. The output synch signal determines the end of the 



__ 
Fabric based on no-pipelined FP modules 

FSgure 4. Fabrics implementations. 

pipeline stage composed of several clock cycles. In data-path 2, the synchronization module is not required since the floating 
point modules are pipelined, resulting in a simpler implementation. 

The fabrics were implemented on the Altera ARM Excalibur system (see Figure 5).  In this system, the user logic can 
communicate with the ARM processor through the dual-port memory or the bridge. We have shown in our previous work [ 13 
that the communication through the dual-port memory is 10 times faster than the bridge. For this reason a DMA component 
was introduced between the fabric and the dual port memory to make communication transparent between the ARM processor 
and the fabric, 

Figure 5. Implementation on ARM Altera Excalibur SoPC. 

Figure 6 shows performance and the resources consumed for each fabric with N=5. 



ARM Excalibur Altera SoPC 
performance 

latency 
logic elements in gates 

logic elements in % 

Fabric based on no-pipelined FP modules Fabr ic based on pipelined FP modules 

-24 cycles, new data every -8 cycles 22 c ycles, new data every 1 cycle 
25220 26025 

65 % 63 % 

132 MFlops 560 MFlops 

memories in blocks 

Figure 6. Results of implementation on SoPC. 
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Figure 7. Results of implementation on EPlS80 and 2VP50 circuits. 

performance 
used logic resources in % 
number of logic cells in % 
number of multipliers in % 

memories in % 

In the case of the Altera Stratix EPlS80, the fabric composed of the N=20 cells fit the component, while in the case of 
the Xilinx Virtex-I1 Pro 2VP50, only N=15 cells would fit. This was due to limitations in routing connections between the 
distributed memories and the multipliers. Even though the number of available resources exceeded the needs of the design, 
only 15 cells could be successfully routed. 

The clock speeds obtained are comparable. However, since the Stratix could fit more cells, it achieves 5.69GNops, while 
the Virtex-I1 Pro delivers 4.47GFlops. 

5.69 GFlops 4.47 GFlops 
89 % t 61 % 
100 9% t 131 % 
100 % t 61 9% 
100 % t 58 % 

6 Conclusion 

In this work, we have conducted a preliminary study of the capabilities of platform FPGAs to run a compute-intensive, 
floating-point intensive kernel. The selected loop is part of a larger Molecular Dynamics simulation. It implements Verlet’s 
algorithm, the predictor corrector position update calculation. The study shows that the Altera Stratix and Xilinx Virtex-I1 
Pro are capable of an impressive floating point rate on this kernel, even when non-optimized, technology-independent floating 
noint modules are used, The performance/watt - a factor of 1OX - compared to Pentium class processors make reconfigurable 
computers even more attractive. 

However, for the MD application, the position update, which we have benchmarked, is only one part of the overall 
computation. The other aspects include inter-atomic distance calculations and force calculation, which are also extremely 
compute-intensive. Current algorithmic methods to perform these calculations involve complex data structures and linked list 
traversals. Thus we foresee that the traditional MD methods will need to be adapted to map efficiently onto reconfigurable 



fabric-based architectures. Our future work lies in developing representations and algorithms for MD that can be mapped 
onto simple, pipelined computational data-paths. 
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