
Approved for public release;
distribution is unlimited.

Title:

Author@):

Submitted to:

A

t Alamos
N A T I O N A L L A B O R A T O R Y

Los Alamos National Labomtory, an affirmative actionlequal opportunity employer, is operated by the University of Californla for the US.
Department of Energy under contract W-7405-ENG-30. By acceptance of this article, the publlsher recognizes that the US. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, orto allow others to do so, for US.
Government purposes. Los Alamos National Laboratory requests that the publlsher identify this article as work performed under the
auspices of the US. Department of Energy. Lo8 Aiamos National Laboratory strongly supports academlc freedom and a researcher‘s right to
publish; as an institution, however, the Laboratory does not endorse the viewpolnt of a publlcation or guarantee its technlcal correctness.

Form 836 (8/00)

/

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A Preliminary Study of Molecular Dynamics on Recodgurable Computers

Christophe Wolinski Frans Trouw
Maya Gokhale

Los Alamos National Laboratory
Los Alamos, NM, U.S.A.

Los Alamos National Laboratory
Los Alamos, NM, U S A .

IFUS.A, IFSIC France

Abstract

In this paper we investigate the performance of platform FPGAs on a compute-intensive, jloating-point-intensive super-
computing application, Molecular Dynamics (MD). MD is a popular simulation technique to track interacting particles
through time by integrating their equations of motion.

One part of the MD algorithm was implemented using the Fabric Generator (FG)[l I] and mapped onto several recon-
figurable logic arrays. FG is a Java-based toolset that greatly accelerates construction of the fabrics from an abstract tech-
nology independent representation. Our experiments used technology-independent IEEE 32-bit floating point operators[4]
so that the design could be easily re-targeted. Experiments were performed using both non-pipelined and pipelined floating
point modules.

We present results for the Altera Excalibur ARM System on a Programmable Chip (SoPC), the Altera Strath EPlS80, and
the Xilinx Virtex-N Pro 2VP.50. The best results obtained were 5.69 GFlops at 8OMHz(Altera Strath EPlS80), and 4.47
GFlops at 82 MHz {Xilinx Virtex-II Pro 2VF50). Assuming a lOWpower budget, these results compare very favorably to a
4Gjlop/40Wprocessing/power rate for a modern Pentium, suggesting that reconfigurable logic can achieve high performance
at low power on jloating-point-intensive applications.

1 Introduction

The goal of our work is to evaluate the performance of modern reconfigurable logic arrays on compute-intensive, floating-
point-intensive algorithms. The algorithm chosen, Molecular Dynamics, is a computer simulation technique whereby the
time-varying interactions of particles are followed by computing each particle's equations of motion.

In the realm of Molecular Dynamics (MD), simulation is a common computational technique used in the physical sciences
to bridge the gap between the individual and collective properties of atoms[9]. It is possible to write down a description of the
forces between atoms as a function of their separation, but there are no analytical methods for extrapolating this information
to predict the properties of for instance a protein. This problem is dealt with by solving the classical equations of motion for
the atoms using numerical methods.'

In this work, we used Mindy[2], a simulation code for sequential computers developed by the University of Illinois. Mindy
can be used to study the interactions of large biomolecular systems.

I 2 Related Work

Molecular Dynamics

Application of the MD method has always been constrained by the limitations imposed by computational speed constraints.
In the late seventies and eighties, most of the then cutting-edge work was carried out on the Cray series of supercomputers, as
the MD problem is inherently vectorizable. Some initial work was carried out to map the problem onto parallel architectures

?.

'There are also approaches based on quantum mechanics but these are not considered here.

such as the ICL DAP, and the Thinking Machines CM-5. With the advent of fast workstations, some of this work moved to
RISC processors, and currently the approach is to use clusters of commodity RISC processors connected with low latency
network connections. One of the limitations of the cluster approach is the requirement that the nodes must communicate the
positions of the particles on a regular basis, and this has led to application specific coarse-graining of the algorithm.

Another approach that continues to be tried is the development of application specific integrated circuits (ASICs), but
these suffer from the problem of almost instant obsolescence and high cost. A current example is the Molecular Dynamics
Machine at the Institute of Physical and Chemical Research (RIKEN) in Japan, which was developed in conjunction with
IBM[7].

The ultimate goal of our work is to gain a significant fraction the performance of an ASIC, without the prohibitively high
cost and inherent obsolescence of that approach.

Floating Point on Reconiigurable Computers

In the realm of floating point implemented on reconfigurable logic, there has been considerable interest in obtaining efficient
floating point performance on reconfigurable computers (RC). Data intensive signal and image processing applications, which
have been successfully mapped to RC, are usually developed in floating point, and it has been necessary to translate to fixed
point in order to obtain high performance on RC. An early study [8] revealed that customized floating point representations
could be efficiently be implemented on RC, but that standard representations consumed excessive area and/or time. More
recent evaluation [3] has demonstrated 95 MHops floating point multiplication on Xilinx Virtex E using a format optimized
for DSP calculations. A proprietary floating point library for the Xilinx [6] shows average performance of 180 MFLOPS
for IEEE-754-compliant variable wordlength floating point arithmetic cores. However, when floating point is just one aspect
of a complex application, the results may not bear out as well. For example, [5] concludes that “despite the sophistication
of today’s FPGA architecture and EDA tools, floating-point precision is still not feasible in FPGA-based Artificiel Neural
Networks.”

Thus the purpose of our study is not only to quantify the performance of floating point operators, but to examine the
performance of a complex floating-point-intensive application on reconfigurable computers.

3 Molecular Dynamic Algorithm

The MD method is based on a repetitive process to solve the equations of motion for typically up to a few million atoms
in simple systems, and tens of thousands of atoms in the more complex simulations of solvated proteins and model biological
membranes. A variety of interatomic potentials are used, and these typically encompass a short-range repulsive term, medium
range attractive term, and a long-range electrostatic component. The heart of the calculation requires that

0 all permutations of the interatomic distances be calculated,

e the forces evaluated from the analytical interatomic potentials, and

0 a net force calculated on each atom reflecting its interaction with the surroundings.

This net force is then used in a predictor corrector algorithm to move the positions of the particles forward in time by a small
timestep, 6t. This timestep is typically small and on the order of a femtosecond as the algorithm does not take into account
the fact that all of the other atoms move at the same time, which in turn changes the forces on each atom. A typical finite
difference method used for the integration step (predictor corrector) is the Verlet algorithm:

~ i (t + At) = % ~ i (t) - ~ i (t - At) + ~ i (t) x At2 (1)

where ~ (t) is the position of particle i at time t, and ai(t) is the net force on atom i at time t arising from all of the
other atoms. This is equation is usually applied in two half steps, where the positions @) and velocities (u) are incremented,
fpllowed by a calculation of the forces at the new position, an finally an update of the velocities as shown in Equations 2
through 4:

calculation of forces at new positions, ~i (t + At)

~ i (t + At) = ~ i f t + 1/2 x At) + 1/2At x ~ (t + At) (4)

Although the calculation of the forces is the most compute intensive part of the calculation, it is also the most complicated.
The full MD algorithm requires features such as periodic boundary conditions, nearest image convention, neighborhood
tables, with an escalating complexity as the size of the problem increases. We anticipate that the traditional MD algorithms
will need to be adapted to the WGA architecture, and so a direct comparison with conventional microprocessors is non-
trivial. As this is a floating point intensive code, our initial work has evaluated the effectiveness of a FPGA to carry out the
Verlet algorithm, which encompasses some of the typical computational effort required in a molecular dynamics loop.

4 Polymorphous Comgmting Fabric and Fabric Generator Toolset

In this study, we wanted to eKperiment with different implementations on different technologies. In order to easily generate
and evaluate many varialions of the basic algorithm, we used the notion of a polymorphous fabric [lo], a cellular array with
regular communication patterns both within the array as well as to an attached processor. Each version of the algorithm
was designed as a “fabric” consisting of simple, inter-connected computational datapath cells, each with an optional local
memory.

In our model, the collection of local memories forms a (dual-ported) global memory that can be loaded and examined
from the attached processor on the SoPC. The cells composing the fabric need not all be the same - a fabric may contain
groups of homogeneous cells, as illustrated in Figure 1, in which different cell types are distinguished by different names
(“Send,” “Rec,” “P,”, and “Ele”). Each datapath cell may have its own controller, or alternatively, a group of identical cells
may share a controller. Many different sorts of communications patterns may be realized within a single fabric. The fabric
can be considered as a processing memory and presents a standard memory to the embedded processor.

I

Figure 1. Example Fabrics
i.

We have built a Fabric Generator FG [1 1 J to help accelerating construction of the fabrics. The FG library contains classes

0 define a module

to

for (j=O; j-matoms; j++)
{
pos[jl += dt*veltjl + 0.5*dt*dt*f [jl*imass[jl;
vel[jl += 0.5*dt*f[jl*imass[j];

1

Figure 2. C code for Verlet Algorithm

0 create a datapath of interconnected modules

0 instantiate cells consisting of datapaths with associated sequencers

0 create a fabric of interconnected cells

The fabric designer writes a Java program and calls methods provided by the library to define and instantiate modules.
In addition, modules may be defined in VHDL using technology-specific components, if desired, and instantiated in the
fabric program. Modules can be instantiated to build a datapath. Next, cells may be defined. A cell contains a datapath
and specifies a sequencer (controller). Cells may share a sequencer (SIMD mode) or each cell may have a unique sequencer
(MIMD mode). A fabric contains a collection of cells and sequencers. The fabric program calls a method to generate a
sequencer description file. After the fabric designer has microcoded a low level control sequence for a datapath, an assembler
generates a state machine . The Controllers, Fabric, and Datapaths in the Figure are then synthesized through the standard
CAD tool chain. The result is a component with standard memory interface which can be connected to any processor.

5 Reconfigurable Computer Implementation

Figure 2 shows the Mindy [2] loop computing equations 3 and4. Our first step was to tile the loop so that each "pr~~essor' '
on the RC computes a subset of the atom positions and velocities. The tiled version of the loop is shown in Figure 3.

int M = natoms/N; where N is a number of cells
for (b o ; i<N-1; i++)

(

for (j=O; j<M-l; j++)
{
k = M*i+j;
pos[k] += dt*vel[k] + dt*f[k]*M[kl; where M [k l = O
vel tkl += f Ikl *Mlkl ;

3
1

I

5*dt*imass [kl

Figure 3. Tiled Verlet Loop

Using the FG toolset, two fabrics were initially implemented on the Altera Excalibur ARM (see 4), both utilizing multi-
cycle IEEE 32-bit floating point modules. One fabric uses non-pipelined floating point modules, while the second uses
pipelined modules. In this experiment we wanted to find out which fabric has a better performance/space ratio.

Each fabric is composed of a collection of N cells, and each cell realizes the inner loop from figure 3 for M number
of atoms. By virtue of the fabric model, on the Altera Excalibur ARM, the ARM processor has direct access to all data
memories.

Since each computational pipeline is independent, communication channels between cells are not required for either
design. In the case of the first fabric, each cell has separated controller because the stop signals emitted by the non-pipelined
adders are asynchronous between cells, and thus must be caught by each cell's controller. For the second fabric, since the
floating point modules are synchronized, a single controller can be used for all the cells.

Figure 4 shows the data-path of each fabric. In data path 1, the registers A, B, C, D and E are used to enable the pipelined
execution of the graph composed of non-pipelined multi-cycles floating points modules. The module synch in data-path
1 synchronizes the stop signals coming from the floating point adders. The output synch signal determines the end of the

__
Fabric based on no-pipelined FP modules

FSgure 4. Fabrics implementations.

pipeline stage composed of several clock cycles. In data-path 2, the synchronization module is not required since the floating
point modules are pipelined, resulting in a simpler implementation.

The fabrics were implemented on the Altera ARM Excalibur system (see Figure 5). In this system, the user logic can
communicate with the ARM processor through the dual-port memory or the bridge. We have shown in our previous work [13
that the communication through the dual-port memory is 10 times faster than the bridge. For this reason a DMA component
was introduced between the fabric and the dual port memory to make communication transparent between the ARM processor
and the fabric,

Figure 5. Implementation on ARM Altera Excalibur SoPC.

Figure 6 shows performance and the resources consumed for each fabric with N=5.

ARM Excalibur Altera SoPC
performance

latency
logic elements in gates

logic elements in %

Fabric based on no-pipelined FP modules Fabr ic based on pipelined FP modules

-24 cycles, new data every -8 cycles 22 c ycles, new data every 1 cycle
25220 26025

65 % 63 %

132 MFlops 560 MFlops

memories in blocks

Figure 6. Results of implementation on SoPC.

20 * (128x32) 30 * (128x32)
memories in %

tThe number o

25 % 37.5%

number of fitted cells
clock frequency

circuits.

Altera Stratix EPlS8O Xilinx Virtex-I1 Pro 2 VP50
20 15

80 MHz 82 MHz

Figure 7. Results of implementation on EPlS80 and 2VP50 circuits.

performance
used logic resources in %
number of logic cells in %
number of multipliers in %

memories in %

In the case of the Altera Stratix EPlS80, the fabric composed of the N=20 cells fit the component, while in the case of
the Xilinx Virtex-I1 Pro 2VP50, only N=15 cells would fit. This was due to limitations in routing connections between the
distributed memories and the multipliers. Even though the number of available resources exceeded the needs of the design,
only 15 cells could be successfully routed.

The clock speeds obtained are comparable. However, since the Stratix could fit more cells, it achieves 5.69GNops, while
the Virtex-I1 Pro delivers 4.47GFlops.

5.69 GFlops 4.47 GFlops
89 % t 61 %
100 9% t 131 %
100 % t 61 9%
100 % t 58 %

6 Conclusion

In this work, we have conducted a preliminary study of the capabilities of platform FPGAs to run a compute-intensive,
floating-point intensive kernel. The selected loop is part of a larger Molecular Dynamics simulation. It implements Verlet’s
algorithm, the predictor corrector position update calculation. The study shows that the Altera Stratix and Xilinx Virtex-I1
Pro are capable of an impressive floating point rate on this kernel, even when non-optimized, technology-independent floating
noint modules are used, The performance/watt - a factor of 1OX - compared to Pentium class processors make reconfigurable
computers even more attractive.

However, for the MD application, the position update, which we have benchmarked, is only one part of the overall
computation. The other aspects include inter-atomic distance calculations and force calculation, which are also extremely
compute-intensive. Current algorithmic methods to perform these calculations involve complex data structures and linked list
traversals. Thus we foresee that the traditional MD methods will need to be adapted to map efficiently onto reconfigurable

fabric-based architectures. Our future work lies in developing representations and algorithms for MD that can be mapped
onto simple, pipelined computational data-paths.

References

[13 M. Gokhale, J. Frigo, K. McCabe, J. Theiler, C. Wolinski, and D. Lavenier. Experience with a hybrid processor: K-means clustering.

[2] J. Gullingsmd. Mindy - a rfiinimalifiolecular dynamics program, http:/!ww.ks.uiuc.edwDevelopment/MDTooidmindy/, 2001.
[3] J.Dido, N.Geraudie, LLoiseau, O.Payeur, Y.Savaria, and D.Poirier. A lexible floating-point format for optimizing data-path and oper

[4] M. Leeser, M. Estlick, N. Kitaryeva, J. Theiler, and J.Szymanski. Applying Reconfigurable Hardware to Segmentation for Multi-

[5] IS. R. Nichols, M. A.Moussir, and S. M.Areibi, Fleasibility of floating-point arithmetic in fpga artificiel neur a1 networks. MAPW,

[6] Quixilica. Quixilica floating point cores. www.quixilica.com/pd~qxx-fpl.pdf, 2002.
171 RIKEN. Molecular dynamics machine. http://atlas.riken.go.jp/mdm/, 2002.
181 N. Shirazi, A. Waltew, and I? Athenes. Quantitative analysis of floating point arithmetic on fpga based custom computing machines.

[9] M. A. . D. Tildesley. Campurfer Simulation of Liquids. Oxford University Press, 1987.

Journal of Supercomputing, 2003.

ators in fpga dsps. FPGA, February 2002.

spectral Imagery. In HPEC 2000, Boston, MA, Sept. 2000.

September 2000.

IEEE International Conferemctr on FPGAs for Custom Computing Machin es, April 1995.

[IO] C. Wolinski, M. Gokhale, arid K. McCabe. A new polymorphous computing fabric. IEEEMicm, Sept. 2002.
ill] C. Wolinski, M. Gokhale, and K. McCabe. Rapid construction of reconfigurable computing fabrics for systems on a programmable

chip. HPCMSS'RA, Feb. 2003.

