158 research outputs found

    Tin(II) Ureide Complexes:Synthesis, Structural Chemistry and Evaluation as SnO precursors

    Get PDF
    In an attempt to tailor precursors for application in the deposition of phase pure SnO, we have evaluated a series of tin (1-6) ureide complexes. The complexes were successfully synthesized by employing N,N′-Trialkyl-functionalized ureide ligands, in which features such as stability, volatility, and decomposition could be modified with variation of the substituents on the ureide ligand in an attempt to find the complex with the ideal electronic, steric, or coordinative properties, which determine the fate of the final products. The tin(II) ureide complexes 1-6 were synthesized by direct reaction [Sn{NMe2}2] with aryl and alkyl isocyanates in a 1:2 molar ratio. All the complexes were characterized by NMR spectroscopy as well as elemental analysis and, where applicable, thermogravimetric (TG) analysis. The single-crystal X-ray diffraction studies of 2, 3, 4, and 6 revealed that the complexes crystallize in the monoclinic space group P2(1)/n (2 and 4) or in the triclinic space group P-1 (3 and 6) as monomers. Reaction with phenyl isocyanate results in the formation of the bimetallic species 5, which crystallizes in the triclinic space group P-1, a consequence of incomplete insertion into the Sn-NMe2 bonds, versus mesityl isocyanate, which produces a monomeric double insertion product, 6, under the same conditions, indicating a difference in reactivity between phenyl isocyanate and mesityl isocyanate with respect to insertion into Sn-NMe2 bonds. The metal centers in these complexes are all four-coordinate, displaying either distorted trigonal bipyramidal or trigonal bipyramidal geometries. The steric influence of the imido-ligand substituent has a clear effect on the coordination mode of the ureide ligands, with complexes 2 and 6, which contain the cyclohexyl and mesityl ligands, displaying κ2-O,N coordination modes, whereas κ2-N,N′ coordination modes are observed for the sterically bulkier tert-butyl and adamantyl derivatives, 3 and 4. The thermogravimetric analysis of the complexes 3 and 4 exhibited excellent physicochemical properties with clean single-step curves and low residual masses in their TG analyses suggesting their potential utility of these systems as MOCVD and ALD precursors.</p

    Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open -label phase III study

    Get PDF
    Background: Targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis has demonstrated clinical benefit in recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). Combining immunotherapies targeting PD-L1 and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) has shown evidence of additive activity in several tumor types. This phase III study evaluated the efficacy of durvalumab (an anti-PD-L1 monoclonal antibody) or durvalumab plus tremelimumab (an anti-CTLA-4 monoclonal antibody) versus standard of care (SoC) in R/M HNSCC patients. Patients and methods: Patients were randomly assigned to receive 1 : 1 : 1 durvalumab (10 mg/kg every 2 weeks [q2w]), durvalumab plus tremelimumab (durvalumab 20 mg/kg q4w plus tremelimumab 1 mg/kg q4w 4, then durvalumab 10 mg/kg q2w), or SoC (cetuximab, a taxane, methotrexate, or a fluoropyrimidine). The primary end points were overall survival (OS) for durvalumab versus SoC, and OS for durvalumab plus tremelimumab versus SoC. Secondary end points included progression-free survival (PFS), objective response rate, and duration of response. Results: Patients were randomly assigned to receive durvalumab (n 1⁄4 240), durvalumab plus tremelimumab (n 1⁄4 247), or SoC (n 1⁄4 249). No statistically significant improvements in OS were observed for durvalumab versus SoC [hazard ratio (HR): 0.88; 95% confidence interval (CI): 0.72e1.08; P 1⁄4 0.20] or durvalumab plus tremelimumab versus SoC (HR: 1.04; 95% CI: 0.85e1.26; P 1⁄4 0.76). The 12-month survival rates (95% CI) were 37.0% (30.9e43.1), 30.4% (24.7e36.3), and 30.5% (24.7 e36.4) for durvalumab, durvalumab plus tremelimumab, and SoC, respectively. Treatment-related adverse events (trAEs) were consistent with previous reports. The most common trAEs (any grade) were hypothyroidism for durvalumab and durvalumab plus tremelimumab (11.4% and 12.2%, respectively), and anemia (17.5%) for SoC. Grade !3 trAE rates were 10.1%, 16.3%, and 24.2% for durvalumab, durvalumab plus tremelimumab, and SoC, respectively. Conclusion: There were no statistically significant differences in OS for durvalumab or durvalumab plus tremelimumab versus SoC. However, higher survival rates at 12 to 24 months and response rates demonstrate clinical activity for durvalumab

    Lesson from the Stoichiometry Determination of the Cohesin Complex: A Short Protease Mediated Elution Increases the Recovery from Cross-Linked Antibody-Conjugated Beads

    Get PDF
    Affinity purification of proteins using antibodies coupled to beads and subsequent mass spectrometric analysis has become a standard technique for the identification of protein complexes. With the recent transfer of the isotope dilution mass spectrometry principle (IDMS) to the field of proteomics, quantitative analysesssuch as the stoichiometry determination of protein complexesshave become achievable. Traditionally proteins were eluted from antibody-conjugated beads using glycine at low pH or using diluted acids such as HCl, TFA, or FA, but elution was often found to be incomplete. Using the cohesin complex and the anaphase promoting complex/cyclosome (APC/C) as examples, we show that a short 15-60 min predigestion with a protease such as LysC (modified on-bead digest termed protease elution) increases the elution efficiency 2- to 3-fold compared to standard acid elution protocols. While longer incubation periodssas performed in standard on-bead digestionsled to partial proteolysis of the cross-linked antibodies, no or only insignificant cleavage was observed after 15-60 min protease mediated elution. Using the protease elution method, we successfully determined the stoichiometry of the cohesin complex by absolute quantification of the four core subunits using LC-SRM analysis and 19 reference peptides generated with the EtEP strategy. Protease elution was 3-fold more efficient compared to HCl elution, but measurements using both elution techniques are in agreement with

    Childbearing postponement and child well-being: a complex and varied relationship?

    Get PDF
    Over the past several decades, U.S. fertility has followed a trend toward the postponement of motherhood. The socioeconomic causes and consequences of this trend have been the focus of attention in the demographic literature. Given the socioeconomic advantages of those who postpone having children, some authors have argued that the disadvantage experienced by certain groups would be reduced if they postponed their births. The weathering hypothesis literature, by integrating a biosocial perspective, complicates this argument and posits that the costs and benefits of postponement may vary systematically across population subgroups. In particular, the literature on the weathering hypothesis argues that as a consequence of their unique experiences of racism and disadvantage, African American women may experience a more rapid deterioration of their health, which could offset or eventually reverse any socioeconomic benefit of postponement. But because very few African American women postpone motherhood, efforts to find compelling evidence to support the arguments of this perspective rely on a strategy of comparison that is problematic because a potentially selected group of older black mothers are used to represent the costs of postponement. This might explain why the weathering hypothesis has played a rather limited role in the way demographers conceptualize postponement and its consequences for well-being. In order to explore the potential utility of this perspective, we turn our attention to the UK context. Because first-birth fertility schedules are similar for black and white women, we can observe (rather than assume) whether the meaning and consequences of postponement vary across these population subgroups. The results, obtained using linked UK census and birth record data, reveal evidence consistent with the weathering hypothesis in the United Kingdom and lend support to the arguments that the demographic literature would benefit from integrating insights from this biosocial perspective

    In Vivo Human Apolipoprotein E Isoform Fractional Turnover Rates in the CNS

    Get PDF
    Apolipoprotein E (ApoE) is the strongest genetic risk factor for Alzheimer’s disease and has been implicated in the risk for other neurological disorders. The three common ApoE isoforms (ApoE2, E3, and E4) each differ by a single amino acid, with ApoE4 increasing and ApoE2 decreasing the risk of Alzheimer’s disease (AD). Both the isoform and amount of ApoE in the brain modulate AD pathology by altering the extent of amyloid beta (Aβ) peptide deposition. Therefore, quantifying ApoE isoform production and clearance rates may advance our understanding of the role of ApoE in health and disease. To measure the kinetics of ApoE in the central nervous system (CNS), we applied in vivo stable isotope labeling to quantify the fractional turnover rates of ApoE isoforms in 18 cognitively-normal adults and in ApoE3 and ApoE4 targeted-replacement mice. No isoform-specific differences in CNS ApoE3 and ApoE4 turnover rates were observed when measured in human CSF or mouse brain. However, CNS and peripheral ApoE isoform turnover rates differed substantially, which is consistent with previous reports and suggests that the pathways responsible for ApoE metabolism are different in the CNS and the periphery. We also demonstrate a slower turnover rate for CSF ApoE than that for amyloid beta, another molecule critically important in AD pathogenesis

    Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer's disease

    Get PDF
    Tau is an axonal microtubule-binding protein. Tau pathology in brain and increased tau concentration in the cerebrospinal fluid (CSF) are hallmarks of Alzheimer's disease (AD). Most of tau in CSF is present as fragments. We immunoprecipitated tau from CSF and identified several endogenous peptides ending at amino acid (aa) 123 or 224 using high-resolution mass spectrometry. We raised neo-epitope-specific antibodies against tau fragments specifically ending at aa 123 and 224, respectively. With these antibodies, we performed immunohistochemistry on brain tissue and designed immunoassays measuring N-123, N-224, and x-224 tau. Immunoassays were applied to soluble brain fractions from pathologically confirmed subjects (81 AD patients, 33 controls), CSF from three cross-sectional and two longitudinal cohorts (a total of 133 AD, 38 MCI, 20 MCI-AD, 31 PSP, 15 CBS patients, and 91 controls), and neuronally- and peripherally-derived extracellular vesicles (NDEVs and PDEVs, respectively) in serum from four AD patients and four controls. Anti-tau 224 antibody stained neurofibrillary tangles and neuropil threads, while anti-tau 123 only showed weak cytoplasmic staining in AD. N-224 tau was lower in the AD soluble brain fraction compared to controls, while N-123 tau showed similar levels. N-224 tau was higher in AD compared to controls in all CSF cohorts (p < 0.001), but not N-123 tau. Decrease in cognitive performance and conversion from MCI to AD were associated with increased baseline CSF levels of N-224 tau (p < 0.0001). N-224 tau concentrations in PSP and CBS were significantly lower than in AD (p < 0.0001) and did not correlate to t-tau and p-tau. In a longitudinal cohort, CSF N-224 tau levels were stable over 6 months, with no significant effect of treatment with AChE inhibitors. N-224 tau was present in NDEVs, while N-123 tau showed comparable concentrations in both vesicle types. We suggest that N-123 tau is produced both in CNS and PNS and represents a general marker of tau metabolism, while N-224 tau is neuron-specific, present in the tangles, secreted in CSF, and upregulated in AD, suggesting a link between tau cleavage and propagation, tangle pathology, and cognitive decline

    Sortase-Modified Cholera Toxoids Show Specific Golgi Localization

    Get PDF
    Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells

    Durvalumab with or without tremelimumab in patients with recurrent or metastatic head and neck squamous cell carcinoma: EAGLE, a randomized, open-label phase III study

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is among the 10 most common cancers worldwide, with increasing incidence.1 Approximately 10% of patients with HNSCC will be diagnosed with metastatic disease, and even when treated early, around half will have disease recurrence.2,3 The platinum-based doublet chemotherapy with cetuximab regimen has been the most widely-used therapy and considered standard of care (SoC) since it was proven effective in 2007 for recurrent/metastatic (R/M) HNSCC in the first-line setting.3,4 However, patients typically progress even after aggressive first-line therapy, and, until recently, the available options (e.g. cetuximab, methotrexate, and taxanes) have delivered limited survival benefits.3 Durvalumab is an immunotherapeutic agent that blocks the interaction between programmed cell death ligand 1 (PD-L1) and its receptors.5 Durvalumab demonstrated encouraging response rates and duration of response (DoR) with a manageable safety profile in patients with HNSCC.6 Although monotherapy agents that block the programmed cell death protein 1 (PD-1)/PD-L1 axis have shown clinical activity, immunotherapy combinations have the potential to improve upon monotherapy activity.7e9 Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and PD-L1/PD-1 pathways have largely non-redundant roles, suggesting that blockade of both could have additive or synergistic effects.10 Indeed, the combination of durvalumab and tremelimumab, an anti-CTLA-4 monoclonal antibody, was explored based on improved efficacy over monotherapy in other solid tumor types.7 This observation, in addition to the activity demonstrated by durvalumab in earlier R/M HNSCC studies, served as the rationale to evaluate durvalumab and tremelimumab in patients with R/M HNSCC. Several studies, including the EAGLE study, were initiated to evaluate combination immunotherapy regimens in various patient groups.11,12 The EAGLE study was the first phase III study to investigate durvalumab and tremelimumab in patients with R/M HNSCC who had progressed after platinumbased therapy. During the conduct of the EAGLE study, anti-PD-1 monoclonal antibodies were approved for use for R/M HNSCC progression following a platinum-based regimen. Treatment with these immunotherapies resulted in a median overall survival (OS) of 7.5e8.4 months.13,14 These immunotherapies are now recommended for second-line treatment as monotherapies for patients with R/M HNSCC.3,13,14 More recently, immunotherapy alone or in combination with platinum-based chemotherapy has shown improvements in OS in the first-line setting, underscoring the clinical utility of immunotherapy in HNSCC.15 Here, we report the results of the randomized phase III EAGLE trial evaluating durvalumab and durvalumab plus tremelimumab versus SoC therapies in patients with R/M HNSCC who have progressed following a platinumcontaining regimen

    Taxonomic Distinctness of Demersal Fishes of the California Current: Moving Beyond Simple Measures of Diversity for Marine Ecosystem-Based Management

    Get PDF
    BACKGROUND: Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness) to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32-48 degrees N) and depth (ca. 50-1220 m) for demersal fishes on the continental shelf and slope of the US Pacific coast. METHODOLOGY/PRINCIPAL FINDINGS: Both average taxonomic distinctness (AvTD) and variation in taxonomic distinctness (VarTD) changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50-150 m) but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD) was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50-150 m), VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. CONCLUSIONS/SIGNIFICANCE: These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current
    corecore