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Exclusive Q1 Q2formation of SnO by low temperature
single-source Q5AACVD†

Thomas Wildsmith,a Michael S. Hill,*a Andrew L. Johnson,*a Andrew J. Kingsleyb

and Kieran C. Molloya

An easily synthesised Sn(II) bis(ureide) derivative is shown to be a

single-source precursor for the aerosol-assisted CVD of SnO, pro-

viding unprecedented levels of oxidation state control at tempera-

tures as low as 250 8C.

High natural abundance and durability combined with low electrical
resistance and excellent optical transparency have resulted in the
adoption of stannic oxide, SnO2,1 as the wide band gap (3.6 eV)
transparent oxide of choice in numerous optoelectronic applications
e.g. solar control glazing,2 in gas sensing,3 as an electrode material in
solar cells4 and as a blue emitter in light-emitting diodes.5 Despite
this impressive utility, and in common with all other widely used
transparent conducting oxide (TCO) materials, primarily indium tin
oxide and zinc oxide, SnO2 displays native n-type character.6 The
realisation of high performance p-type oxide materials, a requisite for
the fabrication of transparent p–n heterojunctions, has, thus, become
a major research goal in materials science.7 While p-type behavior has
been described for a variety of ternary delafossite (MM0O2: M = Cu,
Ag; M0 = B, Al),8 spinel (NiCo2O4)9 and oxy-chalcogenide materials,10

examples of simple binary oxides that display inherent p-type semi-
conduction have been effectively restricted to NiO and Cu2O. Group
15 doping of ZnO11 and similar group 13 substitution in SnO2

has also been reported to provide p-type behavior,12 although the
veracity of these latter reports has been questioned or, in the case
of a recent theoretical exploration, all but discounted.13 Although the

achievement of ‘all tin oxide’ heterojunction devices based entirely on
SnO2 would, thus, appear to be doubtful, this appealing prospect may
yet be realised through the recent emergence of SnO, stannous oxide,
containing tin in its lower Sn(II) oxidation state, as a potential p-type
candidate material.14

While thin films may be prepared by electron beam evaporation,15

pulsed laser deposition16 and RF magnetron sputtering of the bulk
oxide,17 vapour phase chemical deposition of SnO from reactive
inorganic or metalorganic precursors presents formidable challenges.
The maintenance of low or intermediate oxidation states during the
chemical vapour deposition (CVD) of any metallic oxide requires
stringent control of the oxygen-containing process stream and, for the
specific case of SnO, is further complicated by a tendency toward
disproportionation to Sn(0) and SnO2 at temperatures reportedly as
low as 200 1C.1 For example, while Gordon has described the cyclic
Sn(II) amide precursor (I) for the atomic layer deposition (ALD) of
SnOx, the use of hydrogen peroxide as co-reagent ensured that the tin
centres within the resultant thin film materials were ostensibly in
the +4 oxidation state.18 In contrast, SnO in nanoparticle or nanowire
form has been prepared with some level of oxidation state and
morphological control through use of well-defined Sn(II)-centred
precursors,19 while a recent report from this laboratory has described
the first use of a stannous single-source precursor, the cage molecule
Sn6O4(OSiMe3)4 (II), for the liquid injection CVD of SnO.20 Although
these latter observations highlight the feasibility of maintaining
the +2 oxidation state of tin during a CVD process, deposition could
only be achieved at high temperature (450 1C) above which the
constitutional integrity of the oxide was apparently compromised by
the aforementioned lability of SnO toward disproportionation. In this
contribution we address these issues and describe a simple and
practical single-source precursor approach which provides excep-
tional oxidation state control for the CVD of phase-pure SnO at
unprecedentedly reduced process temperatures.

Although Sita and Kemp have demonstrated that stannous
derivatives of silylated amide ligands react with heteroallenes such
as CO2 and organic isocyanates through insertion into the Sn–N
bond, these reactions were deliberately intended to continue with
subsequent silicon-to-oxygen migration and extrusion of the respec-
tive silyl-isocyanate or -carbodiimide products.21,22 The non-silylated
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stannous ureide precursor compound (1) was, thus, synthesised in
high yield by the addition of 2 molar equivalents of tert-butyl
isocyanate to a toluene solution of the stannous alkylamide
[Sn(NMe2)2]2. Compound 1 was isolated in effective stoichiometric
yield by crystallisation from the reaction solution and characterised
by solution NMR (1H, 13C, 119Sn) spectroscopy. X-ray diffraction
analysis performed on single crystals of compound 1 confirmed that
a four-coordinate mononuclear constitution is adopted in the solid
state. The results of this analysis are shown in Fig. 1 and illustrate the
distorted square pyramidal geometry enforced at the Sn(II) centre
through a combination of the stereochemically active lone pair and
the narrow bite angles of the two ureide ligands, which adopt
contrasting k2-N,N0 and k2-N,O coordination modes. Evidence for
solution anisobidenticity could be discerned through 1H NMR stu-
dies, in which the signal assigned to the tert-butyl signal of 1 split into
two singlet resonances below 238 K. Although the solution dynamics
of compound 1 were not further examined we surmise that this
process is due to facile (DG‡ = 46 kJ mol�1) intramolecular exchange
between k2-N,N0 and k2-N,O coordination modes in solution. No
directly analogous Sn(II) ureide derivatives appear to have been
reported previously, however, the 119Sn{1H} NMR spectrum of com-
pound 1 provided a single resonance at d �357 ppm in d8-toluene,
a value which is comparable to previously reported stannous, bis-
(iso-ureide),22 bis(amidinate)23 and bis(guanidinate)24 derivatives.

These latter compounds are unambiguously 4-coordinate in solution
and we, thus, deduce that compound 1 maintains its structural
integrity and displays a similar coordination geometry in hydro-
carbon solution.

Thermogravimetric analysis (TGA) (Fig. S1, ESI†) performed on
compound 1 provided a single mass loss event with an onset
temperature of ca. 100 1C. A stable residue was obtained at 190 1C
(with o0.5% further mass loss to a high temperature limit of 525 1C),
which provided a residual mass of ca. 5%, considerably lower than
expected for either SnO (37.1%) or tin metal (29.2%). Although such
apparent material loss by sublimation indicates that compound 1 is
likely to be applicable to low pressure direct vapour phase delivery, a
combination of high solubility and potentially higher mass transport
and deposition rates led us to employ aerosol-assisted chemical
vapour deposition (AACVD) for initial film growth studies.25 Accord-
ingly, pale yellow, non-hazy and adherent films could be grown by
AACVD of compound 1 from toluene solution (0.1 M) employing
either hot or cold wall conditions onto glass or silicon substrates over
a 250 1C to 350 1C temperature range. Tetragonal SnO (P4/nmm) was
identified by PXRD as the only crystalline phase present at tempera-
tures above 300 1C with no evidence for disproportionation to Sn(0)
and SnO2 even at the highest temperature (Fig. 2a). In contrast to our
earlier report of SnO CVD utilising compound II, the major diffraction
lines [(101), (110)] were identical to those reported in SnO powder,
with no evidence for any preferentially-oriented growth.20 These data
were corroborated by Raman spectroscopy performed on samples
prepared under the full range of growth and temperature conditions,
all of which displayed characteristic B1g and A1g modes at 109 cm�1

and 209 cm�1 respectively as the only observable vibrations (Fig. 2b).26

Importantly, the lower crystallinity samples prepared at 250 and
275 1C were confirmed as SnO and, again, no evidence for dispro-
portionation to Sn(0) and SnO2 or to intermediate phases with Sn2O3

or Sn3O4 compositions could be discerned even for the samples
prepared at 350 1C. Microscopic analysis of films grown on both glass
and silicon substrates by FE-SEM and AFM showed them to be
continuous and to consist of tightly packed platelets, typical of SnO
films deposited by physical and evaporative techniques.15–17,19 The
platelets are uniform in both size and shape (approximate width
50 nm) and are interleaved across the planar surfaces, becoming more
densely packed with increasing deposition temperature (Fig. 3).

Although high hole mobility in metallic oxides is difficult to
achieve due to the formation of deep and localised O 2p-based valence
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Fig. 1 ORTEP representation (50% probability ellipsoids) of compound 1. Hydro-
gen atoms removed for clarity. Sn(1)–O(11) 2.1688(11), Sn(1)–N(21) 2.1715(13),
Sn(1)–N(11) 2.3151(13), Sn(1)–N(2) 2.4839(13), O(11)–C(11) 1.3058(19), O(21)–
C(21) 1.220(2) Å; O(11)–Sn(1)–N(11) 59.15(4), N(21)–Sn(1)–N(2) 57.90(5)1.

Fig. 2 PXRD patterns (a) and Raman spectra (b) of films deposited at (i) 250, (ii) 275, (iii) 300, (iv) 325 and (v) 350 1C.
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band maxima (VBM),27 the presence of the pseudo-closed shell 5s2-
orbitals of the Sn(II) centres in SnO has been reasoned to provide a
mechanism for oxide rehybridisation and consequent advantageous
modification of the VBM.28 Consistent with this rationale, SnO2 does
not exhibit any 5s character in the VBM and the observation of XPS
features in pristine SnO samples with binding energies of 2 eV and
9 eV have, thus, been ascribed to the formation of antibonding and
bonding Sn(II) 5s-O2p states, respectively.29 Although evidence for some
surface oxidation to Sn(IV) was observed, valence band XPS spectra
recorded after argon etching of samples deposited from compound 1
on glass revealed a prominent underlying Sn(II) component with a
leading valence band energy of ca. 2 eV (Fig. 4).

In conclusion, we have demonstrated that the provenance of the
Sn(II) centres in thin films of AACVD-deposited SnO may be directly
attributed to the use of a simple single-source stannous bis(ureide)
precursor. Notably, deposition may be achieved at temperatures
approaching those that will be tolerated by less thermally stable
substrates than glass and silicon and no evidence for Sn(II) dispro-
portionation is observed even at the highest deposition temperature.
Although the decomposition mechanism of compound 1 is yet to be
deduced, our initial supposition is that the production of SnO with
this system may be viewed as the kinetic outcome of a sequence of

well-defined elimination reactions similar to those observed during
the production of inorganic sulfide materials from metalorganic
xanthate precursors.30 We are continuing to elaborate this hypothesis
and to devise routes to similarly metastable oxide and heavier
chalcogenide materials through judicious molecular design.

We thank the EPSRC (UK) for funding (grant no. EP/G03768X/1).
X-ray photoelectron spectra were obtained at the National EPSRC
XPS User’s Service (NEXUS) at Newcastle University, an EPSRC
Mid-Range Facility.
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Fig. 3 SEM images of SnO films prepared on glass at (a) 300 and (b) 325 1C.
(c) Cross section SEM of SnO film prepared on Au-coated glass at 350 1C. (d) AFM
image of SnO film prepared on glass at 350 1C.

Fig. 4 (a) Valence band XPS spectrum of AACVD film of SnO deposited on glass;
(b) valence band XPS spectrum of SnO reference standard (Thermo Fisher
Scientific Knowledge Viewer).
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