18 research outputs found

    Estimating rainfall and water balance over the Okavango River Basin for hydrological applications

    Get PDF
    A historical database for use in rainfall-runoff modeling of the Okavango River Basin in Southwest Africa is presented. The work has relevance for similar data-sparse regions. The parameters of main concern are rainfall and catchment water balance which are key variables for subsequent studies of the hydrological impacts of development and climate change. Rainfall estimates are based on a combination of in-situ gauges and satellite sources. Rain gauge measurements are most extensive from 1955 to 1972, after which they are drastically reduced due to the Angolan civil war. The sensitivity of the rainfall fields to spatial interpolation techniques and the density of gauges was evaluated. Satellite based rainfall estimates for the basin are developed for the period from 1991 onwards, based on the Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave Imager (SSM/I) data sets. The consistency between the gauges and satellite estimates was considered. A methodology was developed to allow calibration of the rainfall-runoff hydrological model against rain gauge data from 1960-1972, with the prerequisite that the model should be driven by satellite derived rainfall products for the 1990s onwards. With the rain gauge data, addition of a single rainfall station (Longa) in regions where stations earlier were lacking was more important than the chosen interpolation method. Comparison of satellite and gauge rainfall outside the basin indicated that the satellite overestimates rainfall by 20%. A non-linear correction was derived used by fitting the rainfall frequency characteristics to those of the historical rainfall data. This satellite rainfall dataset was found satisfactory when using the Pitman rainfall-runoff model (Hughes et al., this issue). Intensive monitoring in the region is recommended to increase accuracy of the comprehensive satellite rainfall estimate calibration procedur

    A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia.

    Get PDF
    The aim of this paper is to use a knowledge-driven expert-based geographical information system (GIS) model coupling with remote-sensing-derived parameters for groundwater potential mapping in an area of the Upper Langat Basin, Malaysia. In this study, nine groundwater storage controlling parameters that affect groundwater occurrences are derived from remotely sensed imagery, available maps, and associated databases. Those parameters are: lithology, slope, lineament, land use, soil, rainfall, drainage density, elevation, and geomorphology. Then the parameter layers were integrated and modeled using a knowledge-driven GIS of weighted linear combination. The weightage and score for each parameter and their classes are based on the Malaysian groundwater expert opinion survey. The predicted groundwater potential map was classified into four distinct zones based on the classification scheme designed by Department of Minerals and Geoscience Malaysia (JMG). The results showed that about 17% of the study area falls under low-potential zone, with 66% on moderate-potential zone, 15% with high-potential zone, and only 0.45% falls under very-high-potential zone. The results obtained in this study were validated with the groundwater borehole wells data compiled by the JMG and showed 76% of prediction accuracy. In addition statistical analysis indicated that hard rock dominant of the study area is controlled by secondary porosity such as distance from lineament and density of lineament. There are high correlations between area percentage of predicted groundwater potential zones and groundwater well yield. Results obtained from this study can be useful for future planning of groundwater exploration, planning and development by related agencies in Malaysia which provide a rapid method and reduce cost as well as less time consuming. The results may be also transferable to other areas of similar hydrological characteristics

    Buffalo, Bush Meat, and the Zoonotic Threat of Brucellosis in Botswana

    Get PDF
    Brucellosis is a zoonotic disease of global importance infecting humans, domestic animals, and wildlife. Little is known about the epidemiology and persistence of brucellosis in wildlife in Southern Africa, particularly in Botswana.Archived wildlife samples from Botswana (1995-2000) were screened with the Rose Bengal Test (RBT) and fluorescence polarization assay (FPA) and included the African buffalo (247), bushbuck (1), eland (5), elephant (25), gemsbok (1), giraffe (9), hartebeest (12), impala (171), kudu (27), red lechwe (10), reedbuck (1), rhino (2), springbok (5), steenbok (2), warthog (24), waterbuck (1), wildebeest (33), honey badger (1), lion (43), and zebra (21). Human case data were extracted from government annual health reports (1974-2006).Only buffalo (6%, 95% CI 3.04%-8.96%) and giraffe (11%, 95% CI 0-38.43%) were confirmed seropositive on both tests. Seropositive buffalo were widely distributed across the buffalo range where cattle density was low. Human infections were reported in low numbers with most infections (46%) occurring in children (<14 years old) and no cases were reported among people working in the agricultural sector.Low seroprevalence of brucellosis in Botswana buffalo in a previous study in 1974 and again in this survey suggests an endemic status of the disease in this species. Buffalo, a preferred source of bush meat, is utilized both legally and illegally in Botswana. Household meat processing practices can provide widespread pathogen exposure risk to family members and the community, identifying an important source of zoonotic pathogen transmission potential. Although brucellosis may be controlled in livestock populations, public health officials need to be alert to the possibility of human infections arising from the use of bush meat. This study illustrates the need for a unified approach in infectious disease research that includes consideration of both domestic and wildlife sources of infection in determining public health risks from zoonotic disease invasions

    Indicators of desiccation-driven change in the distal Okavango Delta, Botswana

    No full text
    This work seeks to determine whether riparian woody plant variables respond to drying and salinity regimes in the semi-arid distal Okavango Delta, northern Botswana. Structural and compositional variables were obtained from 47 field sites. Mapping using satellite imagery illustrated differences in the character of riparian zones in terms of species composition and provided data on flood frequency. Salinity data plots show increases downstream. Results imply that woody plant variables respond to desiccation-driven change due to water-table lowering (reduced recharge) and increased salinization through distinct changes in tree and shrub height, plant density and species richness. In the wetter, intermediate distributaries, key biotic indicators of ecosystem change comprise structural variables such as decreases in canopy cover per cent and tree height and increases of shrub height, which are indicative of mainly ground-water declines. Biotic indicators in the less frequently flooded receiver channels comprise plant density and species richness increases involving mainly brackish ground-water-tolerant and dryland species which are indicative of both ground-water declines and/or salinization. These indicators could provide useful parameters for use in long- and short-term monitoring aimed at assessing desiccation-driven change in different parts of the Okavango Delta and possibly other semi-arid wetlands. The indicators are important as a less-expensive alternative to drilling as a means of verifying ground-water declines and/or salinization

    Use of the geochemical and biological sedimentary record in establishing palaeo-environments and climate change in the Lake Ngami basin, NW Botswana

    No full text
    Sediment samples from a continuous 4.6 m profile in the dry bed of Lake Ngami in NW Botswana were analysed for geochemistry and dated using both 14C and TL methods. Certain units in the profile were found to be diatom rich and these, with the geochemical results, were used as indicators of high and low lake levels within the basin. The Lake Ngami sediments contain a high proportion of SiO2 (51–92.5 wt%, avg. 72.4 wt%) and variable levels of Al2O3 (2.04–17.2 wt%, avg. 8.88 wt%). Based on elevated Al2O3 and organic matter (LOIorgC ) results, lacustrine conditions occurred at ca. 42 ka until 40 ka and diatom results suggest that relatively deep but brackish conditions prevailed. At 40 ka, the lacustrine sedimentary record was terminated abruptly, possibly by tectonic activity. At ca. 19 ka, shallow, aerobic, turbulent conditions were prevalent, but lake levels were at this time increasing to deeper water conditions up until ca. 17 ka. This period coincides with the Late Glacial Maximum, a period of increased aridity in the central southern Africa region. Generally, increasing Sr/Ca ratios and decreasing LOIorgC and Al2O3, from ca. 16 to 5 ka, suggest decreasing inflow into the basin and declining lake levels. Based on the enrichment of LREE results, slightly alkaline conditions prevailed at ca. 12 ka. Diatom results also support shallow alkaline conditions around this time. These lake conditions were maintained primarily by local rainfall input as the region experienced a warmer, wetter phase between 16 and 11 ka. Lake levels rose rapidly by 4 ka, probably in response to enhanced rainfall in the Angolan catchment. These results indicate that lake levels in the Lake Ngami basin are responding to rainfall changes in the Angolan catchment area and local rainfall. The results confirm that the present-day anti-phase rainfall relationship between southern Africa and regions of equatorial Africa was extant during the late Quaternary over the Angolan highlands and NW Botswana
    corecore