269 research outputs found
The “Pieve di Santa Maria” in Arezzo (Italy). From the Laser Scanner Survey to the Knowledge of the Architectural Structure
The parish church of “Santa Maria” is considered one of the most important medieval buildings of Arezzo Although the church is attested from 11th century, it is between the 13th and 14th centuries that reached its current consistency, characterized by the particular façade with small columns on several levels and an imposing bell tower. Later, from the 16th to the 18th century, the church underwent profound transformations, that were almost completely erased by extensive restoration works in the second half of the 19th century.
The architectural survey of the parish church of “Santa Maria” was carried out with a phase-shift laser scanner and a digital reflex camera (Z+F 5006h). 189 scans were performed for generating the 3D model of the church: 180 of them with high density and normal quality, lasting 5-6 minutes; the remaining ones with super high density and high quality, lasting 13-14 minutes. Vectorial drawings of plans and sections were then created from the 3D model.
Thanks to laser scanner survay of the chuch, it was possible to highlight the singularity of the structure of the basilical body and the transept. The tilt of walls and columns, the variations in the thickness of the walls, the considerable deformations of some arches, the cracks and textures of the wall facing were thus shown.
The information obtained attested an architectural structure created by complex construction events that over time have affected this building. The cnstructive singularities involve the medieval genesis of the building, the transformations during the following centuries and the following restoration works.
These composite features are specific and common to every ancient building. This peculiar epistemological condition eschews from simplifications and requires deep and complex studies closely linked to the problems of conservation of the structures
Bulk Etch Rate Measurements and Calibrations of Plastic Nuclear Track Detectors
New calibrations of CR39 and Makrofol nuclear track detectors have been
obtained using 158 A GeV Pb (82+) and In (49+) ions; a new method for the bulk
etch rate determination, using both cone height and base diameter measurements
was developed. The CR39 charge resolution based on the etch-pit base area
measurement is adequate to identify nuclear fragments in the interval 7 <=
Z/beta <= 49. For CR39 the detection threshold is at REL~50 MeV cm^2/g,
corresponding to a nuclear fragment with Z/beta~7. Base cone area distributions
for Makrofol foils exposed to Pb (82+) ions have shown for the first time all
peaks due to nuclear fragments with Z > 50; the distribution of the etched cone
heights shows well separated individual peaks for Z/beta = 78 - 83 (charge
pickup). The Makrofol detection threshold is at REL 2700 MeV cm^2/g,
corresponding to a nuclear fragment with Z/beta~50.Comment: 11 pages, 5 EPS figures. Submitted to Nucl. Instr. Meth.
New MACRO results on atmospheric neutrino oscillations
The final results of the MACRO experiment on atmospheric neutrino
oscillations are presented and discussed. The data concern different event
topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb
Scattering of the high energy muons in absorbers was used to estimate the
neutrino energy of each event. The angular distributions, the L/E_nu
distribution, the particle ratios and the absolute fluxes all favour nu_mu -->
nu_tau oscillations with maximal mixing and Delta m^2 =0.0023 eV^2. A
discussion is made on the Monte Carlos used for the atmospheric neutrino flux.
Some results on neutrino astrophysics are also briefly discussed.Comment: Invited Paper at the NANP03 Int. Conf., Dubna, 200
Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment
The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive
to nuclearites and Q-balls, which could be present in the cosmic radiation as
possible Dark Matter components. It was sensitive also to strangelets, i.e.
small lumps of Strange Quark Matter predicted at such altitudes by various
phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors
exposed for 4.22 years showed no candidate event. New upper limits on the flux
of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null
result also restricts models for strangelets propagation through the Earth
atmosphere.Comment: 14 pages, 11 EPS figure
A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians
Advanced titanosaurian sauropods, such as nemegtosaurids and saltasaurids, were diverse and one of the most important groups of herbivores in the terrestrial biotas of the Late Cretaceous. However, little is known about their rise and diversification prior to the Late Cretaceous. Furthermore, the evolution of their highly-modified skull anatomy has been largely hindered by the scarcity of well-preserved cranial remains. A new sauropod dinosaur from the Early Cretaceous of Brazil represents the earliest advanced titanosaurian known to date, demonstrating that the initial diversification of advanced titanosaurians was well under way at least 30 million years before their known radiation in the latest Cretaceous. The new taxon also preserves the most complete skull among titanosaurians, further revealing that their low and elongated diplodocid-like skull morphology appeared much earlier than previously thought
Oncoplastic and reconstructive surgery in SENONETWORK Italian breast centers: lights and shadows
Highlights: • Despite the significance of oncoplastic procedure, an italian database is lacking. • Senonetwork established a multidisciplinary survey to assess their safety and efficacy. • Reconstructive outcomes were positive across low and high-volume centers. • After mastectomy, implant-based techniques are common. DTI reconstruction is advantageuos. • This contributes to the global understanding of effective strategies against breast cancer
Euclid preparation: XXXV. Covariance model validation for the two-point correlation function of galaxy clusters
Aims. We validate a semi-analytical model for the covariance of the real-space two-point correlation function of galaxy clusters.
Methods. Using 1000 PINOCCHIO light cones mimicking the expected Euclid sample of galaxy clusters, we calibrated a simple model to accurately describe the clustering covariance. Then, we used this model to quantify the likelihood-analysis response to variations in the covariance, and we investigated the impact of a cosmology-dependent matrix at the level of statistics expected for the Euclid survey of galaxy clusters.
Results. We find that a Gaussian model with Poissonian shot-noise does not correctly predict the covariance of the two-point correlation function of galaxy clusters. By introducing a few additional parameters fitted from simulations, the proposed model reproduces the numerical covariance with an accuracy of 10%, with differences of about 5% on the figure of merit of the cosmological parameters Ωm and σ8. We also find that the covariance contains additional valuable information that is not present in the mean value, and the constraining power of cluster clustering can improve significantly when its cosmology dependence is accounted for. Finally, we find that the cosmological figure of merit can be further improved when mass binning is taken into account. Our results have significant implications for the derivation of cosmological constraints from the two-point clustering statistics of the Euclid survey of galaxy clusters
Euclid preparation: XXVII. A UV-NIR spectral atlas of compact planetary nebulae for wavelength calibration
The Euclid mission will conduct an extragalactic survey over 15 000 deg2 of the extragalactic sky. The spectroscopic channel of the Near-Infrared Spectrometer and Photometer (NISP) has a resolution of R ~ 450 for its blue and red grisms that collectively cover the 0.93-1.89 μm range. NISP will obtain spectroscopic redshifts for 3 × 107 galaxies for the experiments on galaxy clustering, baryonic acoustic oscillations, and redshift space distortion. The wavelength calibration must be accurate within 5 Å to avoid systematics in the redshifts and downstream cosmological parameters. The NISP pre-flight dispersion laws for the grisms were obtained on the ground using a Fabry-Perot etalon. Launch vibrations, zero gravity conditions, and thermal stabilisation may alter these dispersion laws, requiring an in-flight recalibration. To this end, we use the emission lines in the spectra of compact planetary nebulae (PNe), which were selected from a PN database. To ensure completeness of the PN sample, we developed a novel technique to identify compact and strong line emitters in Gaia spectroscopic data using the Gaia spectra shape coefficients. We obtained VLT/X-shooter spectra from 0.3 to 2.5 μm for 19 PNe in excellent seeing conditions and a wide slit, mimicking Euclid's slitless spectroscopy mode but with a ten times higher spectral resolution. Additional observations of one northern PN were obtained in the 0.80-1.90 μm range with the GMOS and GNIRS instruments at the Gemini North Observatory. The collected spectra were combined into an atlas of heliocentric vacuum wavelengths with a joint statistical and systematic accuracy of 0.1 Å in the optical and 0.3 Å in the near-infrared. The wavelength atlas and the related 1D and 2D spectra are made publicly available
- …