1,821 research outputs found

    Rotational placement of irregular polygons over containers with fixed dimensions using simulated annealing and no-fit polygons

    Get PDF
    This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional small items inside a bi-dimensional large object. This problem is approached with an heuristic based on simulated annealing. Traditional " external penalization" techniques are avoided through the application of the no-fit polygon, that determinates the collision-free region for each small item before its placement. The simulated annealing controls: the rotation applied and the placement of the small item. For each non-placed small item, a limited depth binary search is performed to find a scale factor that when applied to the small item, would allow it to be fitted in the large object. Three possibilities to define the sequence on which the small items are placed are studied: larger-first, random permutation and weight sorted. The proposed algorithm is suited for non-convex small items and large objects

    Enhanced CO and soot oxidation activity over Y-doped ceria–zirconia and ceria–lanthana solid solutions

    No full text
    Y-doped ceria–zirconia (Ce0.8Zr0.12Y0.08O2-d, CZY) and ceria–lanthana (Ce0.8La0.12Y0.08O2-d, CLY) ternary oxide solid solutions were synthesized by a facile coprecipitation method. Structural, textural, redox, and morphological properties of the synthesized samples were investigated by means of X-ray diffraction (XRD), inductively coupled plasma-optical emission spectroscopy (ICP–OES), Raman spectroscopy (RS), UV–visible diffuse re- flectance spectroscopy (UV–vis DRS), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction by hydrogen (H2-TPR), high resolution transmission electron microscopy (HRTEM), and Brunauer–Emmett–Teller surface area (BET SA) techniques. The formation of ternary oxide solid solutions was confirmed from XRD, RS, and UV–vis DRS results. ICP–OES analysis confirmed the elemental composition in the ternary oxide solid solutions. HRTEM images revealed irregular morphology of the samples. RS, UV–vis DRS, and XPS results indicated enhanced oxygen vacancies in the Y doped samples. H2- TPR profiles confirmed a facile reduction of CZY and CLY samples at lower temperatures. BET analysis revealed an enhanced surface area for CZY and CLY samples than the respective CZ and CL undoped mixed oxides. All these factors contributed to a better CO and soot oxidation performance of CZY and CLY samples. Particularly, the CLY sample exhibited highest catalytic activity among the various samples investigated.We gratefully acknowledge Department of Science and Technology (DST), New Delhi for financial support of this work (SERB Scheme SB/S1/PC-106/2012). D.D. thanks the Department of Education, Australian Government for providing Endeavour Research Fellowship

    Lieb Mode in a Quasi One-Dimensional Bose-Einstein Condensate of Atoms

    Full text link
    We calculate the dispersion relation associated with a solitary wave in a quasi-one-dimensional Bose-Einstein condensate of atoms confined in a harmonic, cylindrical trap in the limit of weak and strong interactions. In both cases, the dispersion relation is linear for long wavelength excitations and terminates at the point where the group velocity vanishes. We also calculate the dispersion relation of sound waves in both limits of weak and strong coupling.Comment: 4 pages, 2 ps figures, RevTe

    Vortex Rings and Lieb Modes in a Cylindrical Bose-Einstein Condensate

    Full text link
    We present a calculation of a solitary wave propagating along a cylindrical Bose-Einstein trap, which is found to be a hybrid of a one-dimensional (1D) soliton and a three-dimensional (3D) vortex ring. The calculated energy-momentum dispersion exhibits characteristics similar to those of a mode proposed sometime ago by Lieb within a 1D model, as well as some rotonlike features.Comment: 4 pages, 4 figure

    The Infrared Imaging Spectrograph (IRIS) for TMT: optical design of IRIS imager with "Co-axis double TMA"

    Get PDF
    IRIS (InfraRed Imaging Spectrograph) is one of the first-generation instruments for the Thirty Meter Telescope (TMT). IRIS is composed of a combination of near-infrared (0.84--2.4 μ\mum) diffraction limited imager and integral field spectrograph. To achieve near-diffraction limited resolutions in the near-infrared wavelength region, IRIS uses the advanced adaptive optics system NFIRAOS (Narrow Field Infrared Adaptive Optics System) and integrated on-instrument wavefront sensors (OIWFS). However, IRIS itself has challenging specifications. First, the overall system wavefront error should be less than 40 nm in Y, z, J, and H-band and 42 nm in K-band over a 34.0 ×\times 34.0 arcsecond field of view. Second, the throughput of the imager components should be more than 42 percent. To achieve the extremely low wavefront error and high throughput, all reflective design has been newly proposed. We have adopted a new design policy called "Co-Axis double-TMA", which cancels the asymmetric aberrations generated by "collimator/TMA" and "camera/TMA" efficiently. The latest imager design meets all specifications, and, in particular, the wavefront error is less than 17.3 nm and throughput is more than 50.8 percent. However, to meet the specification of wavefront error and throughput as built performance, the IRIS imager requires both mirrors with low surface irregularity after high-reflection coating in cryogenic and high-level Assembly Integration and Verification (AIV). To deal with these technical challenges, we have done the tolerance analysis and found that total pass rate is almost 99 percent in the case of gauss distribution and more than 90 percent in the case of parabolic distribution using four compensators. We also have made an AIV plan and feasibility check of the optical elements. In this paper, we will present the details of this optical system.Comment: 18 pages, 14 figures, Proceeding 9908-386 of the SPIE Astronomical Telescopes + Instrumentation 201

    Non-ohmic critical fluctuation conductivity of layered superconductors in magnetic field

    Full text link
    Thermal fluctuation conductivity for a layered superconductor in perpendicular magnetic field is treated in the frame of the self-consistent Hartree approximation for an arbitrarily strong in-plane electric field. The simultaneous application of the two fields results in a slightly stronger suppression of the superconducting fluctuations, compared to the case when the fields are applied individually.Comment: 4 pages, 1 figure, to be published in Phys. Rev.

    The Infrared Imaging Spectrograph (IRIS) for TMT: the ADC optical design

    Get PDF
    We present the current optical design for the IRIS Atmospheric Dispersion Corrector (ADC). The ADC is designed for residual dispersions less than ~1 mas across a given passband at elevations of 25 degrees. Since the last report, the area of the IRIS Imager has increased by a factor of four, and the pupil size has increased from 75 to 90mm, both of which contribute to challenges with the design. Several considerations have led to the current design: residual dispersion, amount of introduced distortion, glass transmission, glass availability, and pupil displacement. In particular, it was found that there are significant distortions that appear (two different components) that can lead to image blur over long exposures. Also, pupil displacement increases the wave front error at the imager focus. We discuss these considerations, discuss the compromises, and present the final design choice and expected performance

    Topological defects and shape of aromatic self-assembled vesicles

    Get PDF
    We show that the stacking of flat aromatic molecules on a curved surface results in topological defects. We consider, as an example, spherical vesicles, self-assembled from molecules with 5- and 6-thiophene cores. We predict that the symmetry of the molecules influences the number of topological defects and the resulting equilibrium shape.Comment: accepted as a Letter in the J. Phys. Chem.

    Advances in EIT reconstruction through Simulated Annealing

    Get PDF
    EIT reconstruction can be solved as an optimization problem through Simulated Annealing (SA), but often at a high computational cost. This paper presents new techniques of EIT reconstruction through SA, including partial evaluation of the objective function, alternate objective functions and multi-objective optimization. Reconstructions of experimental impedance data using the techniques exposed were successfully performed

    Effect of spatial variations of superconducting gap on suppression of the transition temperature by impurities

    Full text link
    We calculate correction to the critical temperature of a dirty superconductor, which results from the local variations of the gap function near impurity sites. This correction is of the order of T_c/E_F and becomes important for short-coherence length superconductors. It generally reduces a pair-breaking effect. In s-wave superconductors small amounts of nonmagnetic impurities can increase the transition temperature.Comment: 5 pages, ReVTE
    • …
    corecore