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Rotational Placement of Irregular 
Polygons over Containers with Fixed 
Dimensions using Simulated 
Annealing and No-Fit Polygons 
This work deals with the problem of minimizing the waste of space that occurs on a 
rotational placement of a set of irregular bi-dimensional small items inside a bi-
dimensional large object. This problem is approached with an heuristic based on 
simulated annealing. Traditional “external penalization” techniques are avoided through 
the application of the no-fit polygon, that determinates the collision-free region for each 
small item before its placement. The simulated annealing controls: the rotation applied 
and the placement of the small item. For each non-placed small item, a limited depth 
binary search is performed to find a scale factor that when applied to the small item, 
would allow it to be fitted in the large object. Three possibilities to define the sequence on 
which the small items are placed are studied: larger-first, random permutation and weight 
sorted. The proposed algorithm is suited for non-convex small items and large objects. 
Keywords: knapsack problem, cutting and packing, optimization 
 
 
 

Introduction 

The knapsack problem arises in the industry whenever one must 
place multiple small items inside a large object such that there is no 
collision between the small items, while either minimizing the size 
of the large object or maximizing the volume occupied by the small 
items. High material utilization is of particular interest to mass 
production industries since small improvements of the layout can 
result in large savings of material and considerably reduce 
production cost. 

The knapsack problem belongs to the more general class of 
combinatorial problems known as cutting and packing problems. 
According to Dyckhoff (1990), the cutting and packing problems 
are mainly characterized by the number of relevant dimensions, the 
regularity and irregularity of the shapes of the small items and large 
objects and the problem assignment. Considering assignment, it is 
possible to identify two situations: output maximization and input 
minimization. In the input minimization, the set of large objects is 
sufficient to accommodate all small items, and there is no selection 
regarding the small items. In the case of output maximization, the 
set of large objects is not sufficient to accommodate all the small 
items and a set of small items has to be assigned to a given set of 
large objects. The survey made by Wascher et al. (2005) improved 
the typology of cutting and packing problems proposed by Dyckhoff 
(1990). According to Wascher et al. (2005), the problem studied in 
this work can be defined as: “... the knapsack problem represents a 
problem category which is characterized by a strongly heteroge-
neous assortment of small items which have to be allocated to a 
given set of large objects. Again, the availability of the large objects 
is limited such that not all small items can be accommodated. The 
value of the accommodated small items is to be maximized”. In this 
survey, Wascher et al. (2005) identified 294 papers containing 
material relevant to cutting and packing. Only 5 papers thereof were 
classified as dealing with two dimensional irregular single knapsack 
problems. This fact shows that the literature related to this kind of 
problem is scarce.1 

It can be shown that even restricted versions of this problem (for 
instance, limiting the small item shape to rectangles only) are NP-
Complete, which means that all algorithms currently known for 
finding optimal solutions require a number of computational steps 
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that grows exponentially with the problem size rather than according 
to a polynomial function (Fowler et al., 1981). It is not worthwhile 
to search for an exact (optimal) algorithm, since it does not appear 
that any efficient optimal solution is possible. Alternative 
approaches that are not guaranteed to find an optimal solution are 
considered instead. Thus, by giving up solution quality, 
computational efficiency can be gained. Probabilistic optimization 
heuristics follow this pattern: while a stipulated stop criteria is not 
satisfied, at each step the function to be optimized is evaluated at a 
set of points and a set of rules is applied to determinate the set of 
points to be evaluated at the next step. The algorithm stops when a 
satisfactory solution of the problem is reached. 

Jakobs (1996) studied orthogonal packing where the small items 
and large objects are rectangular. He used a bottom-left strategy to 
position the small items; the placement sequence is determined 
using a genetic algorithm. He extended the algorithm to process 
irregular small items. The main idea is the determination of 
embedding rectangles with minimum area for all small items. The 
rotation of the small items is determined in this local search. The 
large object is big enough for all small items to be easily placed. 
The algorithm considers all small items as rectangles and ensures 
that no overlap exists among them. This bounding rectangle 
algorithm is not a good approach as the bounding rectangle usually 
contains wasted material. 

Hifi and Hallah (2003) proposed a hybrid algorithm to solve the 
irregular problem. The hybrid algorithm searches for an optimal 
ordering of the small items using a genetic algorithm and identifies 
the best packing using a constructive approach, which consists of 
sequentially positioning a set of ordered small items. Each small 
item is tested for a set of potential positions defined with respect to 
already positioned small items. They studied the exclusively 
translational problem where the large object is big enough such that 
all small items can be easily placed. The algorithm considers all 
small items as rectangles for positioning, then a translation is 
applied to pack the configuration and, simultaneously, ensuring that 
no overlap exists among them. 

Recently, researchers used the no-fit polygon concept to ensure 
feasible layouts; i.e. layouts where the small items do not overlap 
and fit inside the large object. This concept was first introduced by 
Art (1966). Given two small items, A and B, the no-fit polygon can 
be found by tracing one shape around the boundary of the other. 
One of the small items remains fixed in space and the other slides in 
contact with the fixed small item's boundary whilst ensuring that the 
small items always touch but never intersect. 
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Dowsland et al. (2002) used the no-fit polygon and a bottom-left 
strategy as a deterministic heuristic. A small item is placed adjacent 
to the boundary of the no-fit polygon according to the bottom-left 
strategy. The positioning sequence is algorithmically defined by a 
sorting criteria: decreasing area, decreasing length, decreasing width 
and others. They studied an exclusively translational problem and 
the large object is big enough such that all small items can be easily 
placed without overlap. 

Gomes and Oliveira (2006) used the no-fit polygon concept to 
eliminate the overlap in the definition of the initial solution. 
Simulated annealing is used to define which small items exchange 
position and with which orientation. After exchanging position of 
two small items in the layout, overlap usually occurs, which is 
removed by applying a separation model, i.e. a set of translations is 
applied to the overlapping small items. Afterwards, the layout is 
compacted by a set of translations applied to the placed small items, 
achieving layouts that are local minima. However, it is possible that 
the separation model fails in achieving a feasible layout. In this case, 
the proposed algorithm ignores the failed swap operation and 
attempts exchanging two different small items. 

Probabilistic heuristics explore the domain space in a effective 
way, however the space delimited by the non-overlap restriction is 
very complex. Usually, when confronted with such complex spaces, 
probabilistic heuristics “relax” the original constraints of the 
problem, allowing the search to go through points outside the space 
of valid solutions and applying penalization to their cost. This 
technique is known as external penalization. Several authors suggest 
that such an approach which allows but penalizes configurations 
with overlapping small items in the solution space is more efficient 
(Heckmann and Lengauer, 1995; Bennel and Dowsland, 2001). 
However, depending on the severity of the penalty this relaxation 
results in a tendency to converge toward infeasible solutions. A 
further problem is that feasible solutions may be forced to be 
computed at the expense of overall quality. 

This work shows the application of a probabilistic heuristic, the 
so-called simulated annealing, to define the placement of small 
items without the use of external penalization. The knapsack 
problem has an additional difficulty: the large object is bounded. In 
this kind of problem, usually the cost function is the value of the 
unfilled area. A limitation of this approach is its inability to 
differentiate between two different packing arrangements of the 
same set of small items. In this paper, this difficulty is solved by 
scaling unplaced small items and based thereon defining a measure 
of compactness of the remaining free space in a packing 
arrangement. 

External Penalization 

The usual approach to simulated annealing applied to the kind of 
complex spaces discussed above is external penalization. While at 
first this technique greatly simplifies the algorithm, it also 
introduces the additional problem of determining the adequate 
amount of penalization to be applied to external points. This 
problem turns out to be surprisingly difficult for the knapsack 
problem. The most adopted penalization heuristic for external 
solutions of the knapsack problem (that is, solutions with 
overlapping small items) is to apply a penalization based on the 
overlapping area of colliding small items. While this heuristic leads 
to very computationally efficient iterations of the optimization 
process, it has some significant shortcomings discussed in the 
following. 

For illustration purposes, a very simple instance of a packing 
problem is considered: the task consists of packing two small items, 
a rectangle and a triangle inside a variable-length bin. The only 
considered variable is the position x of the triangle (see Fig. 1.(a)), 

the cost function f(x) is the length of the smallest bin containing the 
two small items plus an amount proportional to the overlapping 
area: 

 

 
Figure 1. (a) a relaxed packing problem with non-valid optimal solution. 
The overlapped area is given by (h+b-x)2h/2d, the cost function is given by 
f(x)=x+(h+b-x)2h/2d when there is overlap, and by f(x)=x when no overlap 
exists. (b) shows the graphic of cost function (h=5, b=2, d=3), it is 
possible to observe that the minimum happens when some overlap is 
present. 
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For this problem, a penalization based on the overlapping area 

can lead to an invalid optimal solution as shown in Fig. 1.(b) where 
the minimum corresponds to a situation with overlap.  

External penalization based on overlapping length (informally 
defined as the length of the shortest translation that, when applied to 
an overlapped polygon, eliminates its overlap) would in theory 
eliminate this problem (Heckman and Lengauer, 1995). However, 
the calculation of the overlapping length turns out to be 
computationally expensive for non-convex polygons. Another 
drawback is that those heuristics make the implicit assumption that 
the only class of modification that may be applied to a small item is 
a translation (the overlapping length being the estimative for the 
length of the translation that removes the overlap). This makes such 
heuristics to perform poorly on rotational problems where, in 
several overlapping instances, a large translation may be necessary 
to remove an overlap that may be eliminated with a small rotation. 

A good discussion of external penalization techniques can be 
found in the work of Heckman and Lengauer (1995), where 
problems very similar to those studied here are approached with 
simulated annealing. One characteristic of the presented solution is 
that the optimization process may result in solutions including 
collisions between small items, thus requiring a post-processing step 
of the obtained data. 

The approach adopted here avoids the pitfalls of external 
penalization by the continuous mapping (i.e. it is updated at each 
step of the process) of the complex space of valid solution onto a 
simplified space. Although this additional mapping step increases 
the complexity of the algorithm, it confers to the algorithm a more 
universal character, as there is one less empiric parameter to be 
defined. 

Actually, the proposed algorithm does not explore the whole 
space of possible solutions, focusing instead on a reduced space, 
that contains at least one optimal solution. It is the space of 
connected small items and large object produced by the constructive 
approach and no-fit polygon. One can observe that it is possible to 
construct a connected solution for any and from any non-connected 
solution of a placement problem that allows free translation without 
increase in cost. This reduces the search through irrelevant points 
and enhances the performance of the algorithm. 
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Simulated Annealing 

Simulated Annealing (Kirkpatrick et al., 1983) is the 
probabilistic meta-heuristic adopted in this work. It has been chosen 
due to its capacity to “escape” from local minima (which are very 
frequent in this problem). It is also worth mentioning that the 
process of recrystallization, the inspiration for simulated annealing, 
is a natural instance of a placement problem. 

Simulated annealing originates in the Metropolis algorithm, a 
simulation of the recrystallization of atoms in metal during its 
annealing (gradual and controlled cooling). During annealing, atoms 
migrate naturally to configurations that minimize the total energy of 
the system, even if during this migration the system passes through 
high-energy configurations. The observation of this behavior 
suggested the application of the simulation of such process to 
combinatorial optimization problems (Kirkpatrick et al., 1983). 

Simulated annealing is a hill-climbing local exploration 
optimization heuristic, which means it can skip local minima by 
allowing the exploration of the space in directions that lead to a 
local increase on the cost function. It sequentially applies random 
modifications on the evaluation point of the cost function. If a 
modification yields a point of smaller cost, it is automatically kept. 
Otherwise, the modification also can be kept with a probability 
obtained from the Boltzman distribution 
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E

e)E(P
∆

−
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where P(∆E) is the probability of the optimization process keeping a 
modification that incurs an increase ∆E of the cost function. k is a 
parameter of the process (analogous to the Stefan-Boltzman 
constant) and t is the instantaneous “temperature” of the process. 
This temperature is defined by a cooling schedule, and it is the main 
control parameter of the process. The probability of a given state 
decreases with its energy, but as the temperature rises, this decrease 
(the slope of the curve P(∆E)) diminishes. 

Algorithm 

Consider the problem of minimizing a function F(x), where x is 
a vector. The algorithm starts with a feasible random solution x0. 
Next, at each iteration, it applies a transformation to the solution 
producing a new feasible solution x* in the neighborhood of x. The 
cost increase ∆E=F(x*)-F(x) is evaluated. If this increase is negative 
(meaning the new solution has a lower cost), the new solution is 
automatically kept. If this increase is positive (meaning the new 
solution has a greater cost), a random number r is uniformly 
generated  between 0 and 1. If r is smaller than the probability 
calculated by (2), x* replaces x as the new current solution. 
Otherwise, x* is discarded. 

As can be seen in Fig. 2, the algorithm executes iterations at a 
fixed temperature until a specific stop condition is met. This 
condition determinates whether the system has attained “thermal 
equilibrium” at a determinated temperature. Usually, it is defined as 
a maximum number of accepted modifications and a maximum 
number of iterations. When either of the conditions is met, the 
algorithm proceeds to the next temperature of the cooling schedule. 
The global stopping condition usually is defined by the cooling 
schedule itself. When the cooling schedules reaches its end, the 
algorithm stops. Typically, additional conditions are defined which 
stop the algorithm before the cooling schedule ends. A common 
such condition is a maximum number of iterations allowed during 
which the algorithm performs no significant progress (a situation 
known as “frozen state”). 

 

 
Figure 2. The simulated annealing optimization algorithm. 

Simulated Annealing Parameters 

The success and efficiency of the simulated annealing process 
depends significantly on the careful construction of a cooling 
schedule and the definition of the appropriate initial temperature. 
Geometric cooling is used in this work, since it often leads to good 
results, by allowing the system to settle at an optimal configuration 
as the temperature falls. In geometric cooling, the value for the 
temperature is given by ti=α ti-1. The parameter α is usually chosen 
around 0.95, while the determination of an appropriate initial value 
remains a difficult problem. The initial temperature must be chosen 
high enough such that algorithm does not get stuck in a sub-set of 
solutions and all the solution space is explored in the initial phase 
with high temperatures (the values of ∆E of the cost function are 
very high). One must notice thought that there is a saturation of the 
effect of Tinitial on the initial behavior of the algorithm. For higher 
values of T, the probability of acceptance of newly explored 
solutions is very close to 1, not increasing further with T. So, 
excessively high initial temperatures do not increase the 
effectiveness of the initial space exploration, but only increase the 
duration of the cooling schedule. A proposed heuristic to 
determinate the initial temperature determination (Heckman and 
Lengauer, 1995) is Tinitial = 3 σE / ln(P), where σE is the standard 
deviation of the cost function obtained through some iterations of 
the algorithm, and P is the desired probability of acceptance of 
initial solutions, typically selected between 0.85 and 0.5. 

The Proposed Algorithm 

Local Exploration meta-heuristics such as simulated annealing 
must evaluate a large number of solutions to ensure the quality of 
the obtained results. This implies that the basic operations of such 
algorithms must be efficiently performed. The no-fit polygon is used 
to efficiently avoid overlapping among the small items as well as to 
place them inside the large object. The proposed algorithm is a 
constructive approach with parameters controlled by the simulated 
annealing: the rotation applied to each small item and its placement. 
Three possibilities to define the sequence with which the small 
items are placed are studied: larger first, random permutation and 
weight sorted.  
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No-Fit Polygons and Collision-Free Region 

In robot motion planning this concept is also known as 
Minkowski sums and configuration space obstacle (Latombe, 1991). 
Burke et al. (2006) present a comprehensive description of an 
algorithm for the no-fit polygon generation. Minkowski sums can be 
calculated very efficiently for convex small items. The result of a 
Minkowski sum of two convex small items is a convex polygon 
built from the edges of the original small items (notice this 
construction is unique). Non-convex small items can be decomposed 
into convex polygons in a pre-processing step, as the 
transformations applied (rotations and translations) do not affect 
such a decomposition.  

In this publication the concept of an inner-fit polygon is used, 
which is derived from the no-fit polygon and represents the feasible 
set of points for the placement of the small item inside a large 
object. The inner-fit polygon can be computed by sliding a small 
item along the internal contour of the large object (Dowsland et al., 
2002).  

The no-fit polygon induced by fixed small item i to the 
moveable small item j is represented as NFPij. The inner-fit polygon 
induced by the large object to the moveable small item j is 
represented as IFPj. The collision-free region for a given small item 
j is obtained by the following equation: 

 

sfsii
ijjj NFPIFPCFR

∈

−= U  (3)  

 
where sfsi is the set of fixed small items. The collision-free region 
can result in a set of multiple disconnected polygons. The polygons 
that represent the collision-free region are named in this paper, as 
region. 

Small Item Placement 

The placement of a small item is controlled by parameters 
(θ,r,f). Those parameters are translated into the rotation applied to 
each small item and its relative position to the large object and small 
items already placed. The rotation is straightforwardly derived from 
the parameter θ of the small item. The relative position to the 
collision-free region is derived from r and f using a more complex 
mapping as follows. 

Parameter f defines which of the many possible regions from the 
collision-free region to place the small item in. For that, the m 
available collision-free regions are sorted according to some criteria 
(in this work they are sorted by the x coordinate of their leftmost 
vertex). The index j in this sorting of the particular region where the 
small item will be placed is derived from parameter f as follows: 

 
⎣ ⎦mfj ⋅=  (4) 

 
This is equivalent to assigning each region in the sorting to the 

interval [j/m, (j+1)/m), where j is the zero-based index of the region 
in the sorting. As f is defined in the interval [0,1), the shape to which 
the small item is assigned is determined by the interval which 
contains f. 

To illustrate the selection of regions, consider following 
example for a particular small item at a given moment of the process 
where there are four collision-free regions A1, A2, A3 and A4. The 
region sorting produced the sequence (A2, A1, A3, A4). Then, the 
small item shall be placed in the region: 
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As the shape and number of regions in the collision-free region 

change with the position of the small items already placed inside the 
large object, the points on each region's perimeter (where the new 
small item will be placed) are mapped onto a normalized variable 
r∈[0,1). This is done by picking a reference point on the perimeter 
(in this work this point is the leftmost point in the region). This 
reference point corresponds to the placement point for r=0. From 
this point, the perimeter is traced counterclockwise and its points are 
mapped uniformly onto the interval [0, 1). 

Generation of Placement Solutions 

The initial solution is generated at random. At each step, a new 
solution is generated from a transformation of the preceding 
solution. As defined by the simulated annealing algorithm, this new 
solution is picked from the neighborhood of the preceding solution. 
The process is governed by a neighborhood heuristic. 

A single small item is randomly selected and only one of its 
parameters (θ,r,f), also chosen at random, is randomly modified. As 
all the parameters (θ,r,f) are defined in [0,1), the modification 
consists in adding a random number ∆ generated in [-1/2,1/2) and 
applying a modulus 1 arithmetic to the result. 

Rejected solutions do not contribute to the progress of the 
optimization process. Therefore, the distributions of the individual ∆ 
parameters are adapted in order to increase the number of accepted 
solutions. When at a given iteration the modification applied to a 
parameter leads to a rejected solution, the distribution of ∆ for that 
specific parameter is modified in order to have its standard deviation 
reduced (resulting in a lower modification amplitude). When the 
modification leads to an accepted solution, the distribution of ∆ for 
that parameter is modified to increase its standard deviation 
(resulting in a larger modification amplitude). 

This work proposes to continuously map a subset of the whole 
space of feasible solutions onto a simplified space. The subset of 
feasible solutions considered by the process is the subset of 
connected solutions. For each small item to be placed, its collision-
free region is calculated. The small item is then placed on the 
perimeter of this region, ensuring thus that it will always be 
connected to at least one small item or large object. 

Heuristics for the Sequence of Placement 

The sequence with which the small items can be placed is 
determined by one of the following heuristics given as examples: 

• Larger-first: this deterministic selection heuristic is used in 
combination with bottom-left placement heuristics. It sorts 
the small items by area and places the larger small items 
first. This heuristic usually leads to satisfying results, but 
like with all deterministic heuristics it is possible to build 
problem instances for which this heuristic never reaches the 
global optimum. The larger-first heuristic is used in 
Dowsland et al. (2002). 

• Random Permutation: this probabilistic heuristic introduces 
a randomized small item selection step to the simulated 
annealing. With a given probability, instead of changing 
the small item parameters, the simulated annealing 
algorithm swaps the placement order of two small items. 
This new solution candidate is evaluated in the same way 
as a regular simulated annealing solution, and accepted or 
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rejected analogously. The random permutation is used in 
literature by Gomes and Oliveira (2006). 

• Weight sorted: this heuristic adds a new parameter w to the 
small item parameters (θ,r,f). The w parameter is also taken 
on the interval [0,1), and generated by the simulated 
annealing similarly to the known parameters. The 
placement sequence is such that the small items with larger 
w parameters are placed first. This heuristic turned out 
surprisingly difficult to adjust (the convergence of the 
algorithm becomes very dependent of the chosen 
magnitude for the weights), and leads to unstable results. 

Handling Non-Placed Small Items 

Herz and Widmer (2003) proposed general guidelines for 
applications of local-search meta-heuristics to combinatorial 
optimization problems. One of the proposed guidelines is: “The 
topology of the space induced by the cost function must not be too 
flat”. In other words this means that the existence of contiguous 
solutions with identical costs is harmful to the algorithm 
performance. 

To eliminate those cost collisions, the cost of a given solution 
can be modified in order to reflect how close this solution is to 
having a non-placed small item fitted in the large object. In the 
proposed solution, for each non-placed small item, a limited-depth 
binary search is performed to find a scale factor (between 0 and 1) 
that, when applied to the small item, would allow it to be fitted in 
the large object. 

The described handling scheme for non-placed small items 
induces relatively high costs since each additional search level 
requires for every non-placed small item an additional scaling and 
placing operation. Actually, since only the best scale factor is 
relevant, the search may be aborted for small items whose scale 
level is known to be lower than one previously found for another 
small item. 

Function Cost Evaluation 

The simulated annealing algorithm produces at each iteration a 
solution for the problem composed of 

• A sequence of placement for the small items, 
• For each small item, the parameters (θ,r,f). 
 
To evaluate the cost function for this solution, the small items 

are placed sequentially in the large object. 
The placement process of a single small item occurs in the 

following sequence (see Fig. 3): 
• The rotation θ is applied to the small item, 
• The collision-free region inside the large object is 

calculated considering the already placed small items, 
• The parameter f is used to determinate in which region of 

the collision-free region the small item shall be placed, 
• Using the parameter r, the small item is placed on the 

perimeter of the chosen region. 
 
When the collision-free region has no sufficiently large area for 

a small item, it is not placed in the large object. Then, the limited-
depth binary search is performed to find a scaling factor that, when 
applied to the small item would allow it to be fitted in the large 
object.  

 

 
Figure 3. Example of placement of a single small item during the 
optimization process. 

Results 

All problem instances studied here have a solution where all 
small items can be fitted in the large object. That allowed the 
adoption of artificial stop conditions to simplify the study. On all 
problems, the large object area is 10% larger than the total area of 
the small items. The optimization method was implemented using a 
modified version of the PolyBoolean library. The random-number 
generation uses the Mersene-Twister generator (Matsumoto and 
Nishimura, 1998). A simple geometric cooling with α=0.95 was 
adopted. The binary search was executed with a fixed depth equal 
four (leading to 16 possible scale levels). The placement sequence 
was produced by the larger-first heuristic. 

The behavior of the optimization process is illustrated through 
cost function (energy) histograms of the search while the 
temperature diminishes. For a given temperature, a gray-level 
histogram of the distribution of the cost function at that temperature 
is plotted. The resulting graph shows a plot of cost histograms 
(horizontal bars) and temperature (dots) versus the number of 
iterations. Darker horizontal bars in the histogram, indicate a higher 
frequency of occurrence of a particular level of energy at a given 
temperature (see Fig. 4). ´ 

 
Figure 4. Visualization of the simulated annealing macro-properties 
through sequences of temperatures and cost function histograms (a 
generic optimization process is shown). 
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One can notice in the Fig. 4 that as the temperature decreases, 
the number of accepted solutions per iteration decreases (as more 
solutions are rejected). Consequently, the number of iterations spent 
at each temperature increases, effectively leading to a slower 
cooling schedule. 

When evaluating the algorithm performance from the obtained 
results, one must take into account the fact that usually, a solution as 
good as the final one is found in far fewer iterations (on the results 
presented here it happens at 1/4 or less of the total iterations) than it 
takes for the algorithm to converge. Of course, letting the algorithm 
take its course is the only generic way to know if any previously 
found solution will be the best found, but this suggests that an 
algorithm that keeps track of the best found solution may be 
interrupted and still return a satisfactory solution. 

Small Puzzle 

The first example is a fairy simple puzzle with four non-convex 
non-congruent small items. The non-convex small items are 
decomposed into convex polygons in a pre-processing step. This 
decomposition does not affect in the final solution. Figure 5 shows 
the final solution of this problem and Fig. 6 the cost-function 
histograms. Based on the cost-function histograms, two distinctive 
phases of the process can be recognized. The first phase is 
characterized by a energy level higher than 0.15. The second phase 
begins after 25000 iterations and has a energy level smaller than 
0.15. Convergence occurred after 350000 iterations, but the best 
solution was found much earlier, around 25000 iterations (about 
four minutes on a 2 GHz Pentium 4 processor).  

 
 

 
Figure 5. Final solution of a small puzzle with four small items. 

 
 
 
 
 

 
Figure 6. Cost-function histograms for the small puzzle. 

Tangram Puzzle 

The tangram puzzle consists of the placement of seven convex 
non-congruent small items. Figure 7 shows the final solution of this 
problem and Fig. 8 the cost function histograms. In this nesting 
problem, the simulated annealing algorithm encounters a phase 
transition when the two greater triangles settle at their final position. 
The convergence occurred after 525000 iterations, but the final 
solution was found at around 135000 iterations (about twenty-five 
minutes on a 2 GHz Pentium 4 processor).  

 
 

 
Figure 7. Final solution of a tangram puzzle with seven polygons. 

 
 
As can be seen in Fig. 8, the temperature is lowered as the 

cooling schedule progresses, leading the system to lower energy 
states. The transition between states is not smooth. Two distinctive 
phases can be recognized. This corresponds to a macro-organization 
of the system, when the two larger triangular small items settle at 
their final configuration, leaving the position of smaller small items 
to be defined. 

 
 
 

 
Figure 8. Cost-function histograms for the tangram puzzle. 

 
 
As presented in section Simulated Annealing Parameters, the 

geometric cooling parameter α defines how the temperature falls 
according to ti=α ti-1. The cost function histograms shown in Fig. 8 
were obtained using α=0.95. An instance of the tangram puzzle was 
processed with α=0.90, leading to a faster cooling. As can be seen 
in Fig. 9, while the process takes less iterations to converge, it does 
not converge to the global optimum, getting “frozen” at a 
suboptimal configuration. 
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Figure 9. Cost-function histograms for a “fast cooling” of the tangram 
puzzle. 

 

Influence of the Search Depth when Sorting Solutions 

The effect of the modification of the cost function described in 
section Handling Non-Placed Small Items can be seen in Figs. 10 
and 11 for the problem described in section Small Puzzle. 

 
 

 
Figure 10. Energy histogram for 256 levels of scale search. Notice the 
almost continuous behavior of the cost function. 

 
 

 
Figure 11. Energy histogram for 2 levels of scale search. The discrete 
behavior of the cost function is evident. 

 
When the number of search levels is increased, the convergence 

is smoother and reaches optimal solutions in fewer iterations. This 
can be explained by the reduction of the gap between the discrete 

levels the cost function may assume. As mentioned previously, one 
of the main difficulties of the placement problem with fixed large 
objects is the fact that the cost function assumes only discrete levels, 
while the optimization variables are continuous. 

There is of course a tradeoff to be considered, as the 
computational cost of each iteration increases with the number of 
search levels. For this particular (and extreme) instance, while the 
process with 256 levels reached optimal solutions in fewer 
iterations, the process with 2 levels reached optimal solutions in less 
time, as each iteration was much faster. 

Influence of the Placement Order Heuristic 

For the problems above, the larger-first deterministic heuristic 
had a much better performance than the random permutation and 
weight sorted probabilistic heuristics. In particular, for the tangram 
puzzle, the weight sorted heuristic displayed an unreliable behavior 
(often it converged to a sub-optimal configuration). 

The better performance of the deterministic heuristic can be 
easily explained by the fact that it does not spend additional 
iterations to find the proper placement order. The popularity of the 
bottom-left heuristic can be understood by its low computational 
cost. Besides that, by naturally nesting the small items next to the 
walls of the large object (this is an heuristic applied almost 
exclusively to rectangular large objects), it keeps a single large 
unobstructed area (in opposition to several small free areas), where a 
larger variety of small items may be fitted. The deficiency of this 
approach is that there is no guarantee that for every placement the 
bottom-left heuristic will lead to an optimal solution. 

For instance, one can easily build a problem instance where the 
combined bottom-left and larger-first heuristics cannot reach an 
optimal solution. The problem instance “Framed Square” shown in 
Fig. 12.(b) illustrates the deficiency of this deterministic heuristic. 
In this example, the larger piece (the square) must not be placed 
first, as that will produce only configurations with the square in 
contact with the large object. This simple instance of the placement 
problem is easily solved by both the weight sorted and the random 
permutation heuristics, but its optimal solution is unattainable by the 
larger-first heuristic, as illustrated in Fig. 12.(a). It is possible as 
well to produce instances where larger-first fails for other 
deterministic placement heuristics. 

 
 

 
Figure 12. (a) Problem instance whose optimal solution cannot be reached 
through larger-first and bottom-left heuristics combined. (b) Problem 
instance solved with a placement order produced by the simulated 
annealing. 

Conclusions 

The placement problem deals with the task of minimizing the 
waste of space that occurs on a rotational placement of a set of 
irregular bi-dimensional small items inside a bi-dimensional large 
object with fixed dimensions. The survey made by Wascher et al. 
(2005) classified only 5 papers as related to the specific subject 
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studied here. However, these 5 papers describe exclusively 
translational approaches. One of the main difficulties of the 
placement problem with fixed large objects is the fact that the cost 
function assumes only discrete levels, while the optimization 
variables are continuous. 

Herz and Widmer (2003) proposed general guidelines for the 
application of local-search meta-heuristics to combinatorial 
optimization problems. One of the proposed guidelines is: “The 
topology of the space induced by the cost function must not be too 
flat”. To avoid the resulting cost collisions, the cost was modified in 
order to estimate how close the current solution is to having a non-
placed small item fitted in the large object. To do so, a limited-depth 
binary search is performed for each non-placed small item to find a 
scaling factor (between 0 and 1) that, when applied to the small 
item, would allow it to be fitted in the large object. The search depth 
must be chosen with care, it must be not too large as the cost of each 
iteration increases. Satisfactory values of the scaling factor were 
determined for the studied problems. 

The usual approach to simulated annealing applied to the kind of 
complex spaces discussed here is external penalization. While at 
first this technique greatly simplifies the problem, it also introduces 
the additional difficulty of determining the adequate amount of 
penalization to be applied to external points. The most common 
penalization heuristic for external solutions of the kind of problem 
studied here is to apply penalization based on the overlapping area 
of colliding polygons. While this heuristic leads to very 
computationally efficient iterations of the optimization process, it 
can lead to an invalid optimal solution. The external penalization is 
avoided by using no-fit polygons. The layout is created in a 
constructive approach, where the small items are sequentially 
positioned. 

The placement of a small item is controlled by the following 
simulated annealing parameters: the rotation applied and the 
placement of small items. Since rejected solutions do not contribute 
to the progress of the optimization process, the distribution is 
adapted to increase the number of accepted solutions. The progress 
of the simulated annealing algorithm is visualized through cost-
function histograms. 
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