IRIS (InfraRed Imaging Spectrograph) is one of the first-generation
instruments for the Thirty Meter Telescope (TMT). IRIS is composed of a
combination of near-infrared (0.84--2.4 μm) diffraction limited imager and
integral field spectrograph. To achieve near-diffraction limited resolutions in
the near-infrared wavelength region, IRIS uses the advanced adaptive optics
system NFIRAOS (Narrow Field Infrared Adaptive Optics System) and integrated
on-instrument wavefront sensors (OIWFS). However, IRIS itself has challenging
specifications. First, the overall system wavefront error should be less than
40 nm in Y, z, J, and H-band and 42 nm in K-band over a 34.0 × 34.0
arcsecond field of view. Second, the throughput of the imager components should
be more than 42 percent. To achieve the extremely low wavefront error and high
throughput, all reflective design has been newly proposed. We have adopted a
new design policy called "Co-Axis double-TMA", which cancels the asymmetric
aberrations generated by "collimator/TMA" and "camera/TMA" efficiently. The
latest imager design meets all specifications, and, in particular, the
wavefront error is less than 17.3 nm and throughput is more than 50.8 percent.
However, to meet the specification of wavefront error and throughput as built
performance, the IRIS imager requires both mirrors with low surface
irregularity after high-reflection coating in cryogenic and high-level Assembly
Integration and Verification (AIV). To deal with these technical challenges, we
have done the tolerance analysis and found that total pass rate is almost 99
percent in the case of gauss distribution and more than 90 percent in the case
of parabolic distribution using four compensators. We also have made an AIV
plan and feasibility check of the optical elements. In this paper, we will
present the details of this optical system.Comment: 18 pages, 14 figures, Proceeding 9908-386 of the SPIE Astronomical
Telescopes + Instrumentation 201