192 research outputs found

    Flavonoids in phylloclades discriminate endemic Semele androgyna chemotypes from Madeira

    Get PDF
    Thirty-five randomly-collected Semele androgyna Kunth samples were screened by RP-HPLC for their phenolic composition. Fraction analysis allowed the detection of 17 different compounds. According to their retention times and UV spectra obtained by diode array analysis, these phenolics represent three classes: phenolic acids, flavones and flavonols. Co-chromatography with specific standards enabled identification of quercetin, rutin and quercitrin in Semele tissues for the first time. Polymorphism based on phenolic composition was evaluated using multivariate analysis and showed four distinct S. androgyna clusters. This polymorphism was not associated with morphological diversity or different in ambient light intensities. Biochemical differentiation is thus present in this species. The application of multivariate analysis techniques to RP-HPLC data has allowed the classification of samples into two groups, previously proposed on the basis of morphological and cytotaxonomical information. Therefore, the use of phenolics as chemotaxonomic markers in Semele is highly recommended because of its diagnostic value, even at a subspecies level. Discriminant canonical analysis and Mahalanobis distances confirmed these clusters as recognisable chemosystematic units. However, these units do not support the separation of S. pterygophora.The Portuguese Foundation for Science and Technology (FCT) funded this work through the Centre of Macaronesian Studies (CEM). The authors are grateful to the Madeiran Centre of Science and Technology (CITMA), the Berardo Foundation and European Social Funding for financial assistance given during execution of this work. The assistance rendered by Mr Rogério Correia during field collection is gratefully acknowledged.info:eu-repo/semantics/publishedVersio

    Li1.5La1.5MO6 (M = W6+, Te6+) as a new series of lithium-rich double perovskites for all-solid-state lithium-ion batteries

    Get PDF
    Solid-state batteries are a proposed route to safely achieving high energy densities, yet this architecture faces challenges arising from interfacial issues between the electrode and solid electrolyte. Here we develop a novel family of double perovskites, Li1.5La1.5MO6 (M = W6+, Te6+), where an uncommon lithium-ion distribution enables macroscopic ion diffusion and tailored design of the composition allows us to switch functionality to either a negative electrode or a solid electrolyte. Introduction of tungsten allows reversible lithium-ion intercalation below 1 V, enabling application as an anode (initial specific capacity >200 mAh g-1 with remarkably low volume change of ∼0.2%). By contrast, substitution of tungsten with tellurium induces redox stability, directing the functionality of the perovskite towards a solid-state electrolyte with electrochemical stability up to 5 V and a low activation energy barrier (<0.2 eV) for microscopic lithium-ion diffusion. Characterisation across multiple length- and time-scales allows interrogation of the structure-property relationships in these materials and preliminary examination of a solid-state cell employing both compositions suggests lattice-matching avenues show promise for all-solid-state batteries

    Structural, electrical conductivity and dielectric relaxation behavior of LiHf2(PO4)3 ceramic powders

    Get PDF
    Lithium hafnium phosphate LiHf2(PO4)3 (LHP) was synthesized via solid-state synthesis technique. The sintering behavior, structure, and phase composition of the as-prepared sample was analyzed using X-ray diffraction (XRD) characterization technique. The XRD-Rietveld refinement analysis showed that after sintering at low temperatures 500 to 1000 °C, it exhibited various secondary phases. However, a single phase was observed as the sintering temperature increases from 1100 to 1200 °C. LHP sintered at 1100 °C produced real features of sodium superionic conductor type (NASICON-type) with hexagonal crystal axis indicating R-3c space group. The electrical properties were studied using impedance spectroscopy technique. Frequency and temperature dependence behavior of conductivity (ac and dc) and dielectric permittivity were studied. The results obtained describes the conduction mechanism in the system. Electric modulus formalism was performed to investigate the relaxation behavior which showed that as measuring temperature increases, the relaxation frequency increases whereas relaxation time decreases. This behavior explains the hopping mechanism of the charge carriers in the system. Likewise, the correlated barrier hopping model elucidates the dominant hopping mechanism

    Elevation of the Yields of Very Long Chain Polyunsaturated Fatty Acids via Minimal Codon Optimization of Two Key Biosynthetic Enzymes

    Get PDF
    Eicosapentaenoic acid (EPA, 20:5Δ5,8,11,14,17) and Docosahexaenoic acid (DHA, 22:6Δ4,7,10,13,16,19) are nutritionally beneficial to human health. Transgenic production of EPA and DHA in oilseed crops by transferring genes originating from lower eukaryotes, such as microalgae and fungi, has been attempted in recent years. However, the low yield of EPA and DHA produced in these transgenic crops is a major hurdle for the commercialization of these transgenics. Many factors can negatively affect transgene expression, leading to a low level of converted fatty acid products. Among these the codon bias between the transgene donor and the host crop is one of the major contributing factors. Therefore, we carried out codon optimization of a fatty acid delta-6 desaturase gene PinD6 from the fungus Phytophthora infestans, and a delta-9 elongase gene, IgASE1 from the microalga Isochrysis galbana for expression in Saccharomyces cerevisiae and Arabidopsis respectively. These are the two key genes encoding enzymes for driving the first catalytic steps in the Δ6 desaturation/ Δ6 elongation and the Δ9 elongation/Δ8 desaturation pathways for EPA/DHA biosynthesis. Hence expression levels of these two genes are important in determining the final yield of EPA/DHA. Via PCR-based mutagenesis we optimized the least preferred codons within the first 16 codons at their N-termini, as well as the most biased CGC codons (coding for arginine) within the entire sequences of both genes. An expression study showed that transgenic Arabidopsis plants harbouring the codon-optimized IgASE1 contained 64% more elongated fatty acid products than plants expressing the native IgASE1 sequence, whilst Saccharomyces cerevisiae expressing the codon optimized PinD6 yielded 20 times more desaturated products than yeast expressing wild-type (WT) PinD6. Thus the codon optimization strategy we developed here offers a simple, effective and low-cost alternative to whole gene synthesis for high expression of foreign genes in yeast and Arabidopsis

    A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting

    Full text link

    Switching on fast lithium ion conductivity in garnets: The structure and transport properties of Li3+xNd3Te2-xSbxO12

    No full text
    Polycrystalline samples of the garnets Li3+xNd3Te2-xSbxO12 have been prepared by high temperature solid state synthesis. X-ray and neutron powder diffraction data show that all compounds crystallize in the space group Ia3j d with lattice parameters in the range 12.55576(12) Å for x ) 0.05 to 12.6253(2) Å for x ) 1.5. The lithium is distributed over a mixture of oxide tetrahedra and heavily distorted octahedra. Increasing the lithium content in these compounds leads to the introduction of vacancies onto the tetrahedral position and an increasing concentration of lithium found in the octahedra. The latter exhibit considerable positional disorder with two lithium cations positions within each octahedron. Impedance measurements show fast ion conduction with an activation energy of ca. 0.59(6) eV that is largely invariant with composition. Solid-state Li NMR measurements indicate that there is no exchange of lithium between the different coordination environments. These results indicate that lithium conduction in the garnet structure occurs exclusively via a network of edge-linked distorted oxide octahedra and that the tetrahedrally coordination lithium plays no part in the transport properties
    corecore