9 research outputs found

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    Technical and conceptual considerations for using animated stimuli in studies of animal behavior

    No full text
    Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior

    Spider–Plant Interactions: An Ecological Approach

    No full text
    Spiders are among the most common animals in diverse terrestrial environments, and display a variety of lifestyles and foraging modes. This chapter represents an overview of our knowledge of spider–plant interactions. Spiders are strongly influenced by plant architecture, rather than being randomly distributed in the vegetation; structures such as rosette-shaped clusters of leaves or glandular trichomes are particularly common in plants that have associations with spiders. Spiders derive benefits from plants such as shelter and access to insect prey. In turn, they can protect plants against herbivory. However, they may also consume or deter pollinators, imposing a cost that can exceed their benefit to the plant. Specific spider–plant associations are mutualistic if spiders provide protective or nutritional benefits, thus improving plant fitness, and if plants provide shelter and suitable foraging sites to spiders. We examine several case studies of spiders living in association with plants, and describe spatial/temporal adaptations in spider–plant relationships
    corecore