1,440 research outputs found
Thermodynamic Losses in a Gas Spring: Comparison of Experimental and Numerical Results
Reciprocating-piston devices can be used as high-efficiency compressors and/or expanders. With an optimal valve design and by carefully adjusting valve timing, pressure losses during intake and exhaust can be largely reduced. The main loss mechanism in reciprocating devices is then the thermal irreversibility due to the unsteady heat transfer between the compressed/expanded gas and the surrounding cylinder walls. In this paper, pressure, volume and temperature measurements in a piston-cylinder crankshaft driven gas spring are compared to numerical results. The experimental apparatus experiences mass leakage while the CFD code predicts heat transfer in an ideal closed gas spring. Comparison of experimental and numerical results allows one to better understand the loss mechanisms in play. Heat and mass losses in the experiment are decoupled and the system losses are calculated over a range of frequencies. As expected, compression and expansion approach adiabatic processes for higher frequencies, resulting in higher efficiency. The objective of this study is to observe and explain the discrepancies obtained between the computational and experimental results and to propose further steps to improve the analysis of the loss mechanisms
Fast Approximation of Nonlinearities for improving inversion algorithms of PNL mixtures and Wiener systems
This paper proposes a very fast method for blindly approximating a nonlinear mapping
which transforms a sum of random variables. The estimation is surprisingly
good even when the basic assumption is not satisfied.We use the method for providing
a good initialization for inverting post-nonlinear mixtures and Wiener systems.
Experiments show that the algorithm speed is strongly improved and the asymptotic
performance is preserved with a very low extra computational cost
Quasiparticles dynamics in high-temperature superconductors far from equilibrium: an indication of pairing amplitude without phase coherence
We perform time resolved photoelectron spectroscopy measurements of optimally
doped \tn{Bi}_2\tn{Sr}_2\tn{CaCu}_2\tn{O}_{8+\delta} (Bi-2212) and
\tn{Bi}_2\tn{Sr}_{2-x}\tn{La}_{x}\tn{Cu}\tn{O}_{6+\delta} (Bi-2201). The
electrons dynamics show that inelastic scattering by nodal quasiparticles
decreases when the temperature is lowered below the critical value of the
superconducting phase transition. This drop of electronic dissipation is
astonishingly robust and survives to photoexcitation densities much larger than
the value sustained by long-range superconductivity. The unconventional
behaviour of quasiparticle scattering is ascribed to superconducting
correlations extending on a length scale comparable to the inelastic path. Our
measurements indicate that strongly driven superconductors enter in a regime
without phase coherence but finite pairing amplitude. The latter vanishes near
to the critical temperature and has no evident link with the pseudogap observed
by Angle Resolved Photoelectron Spectroscopy (ARPES).Comment: 7 pages, 5 Figure
Development of CBCT-based prostate setup correction strategies and impact of rectal distension.
BACKGROUND: Cone-beam computed tomography (CBCT) image-guided radiotherapy (IGRT) systems are widely used tools to verify and correct the target position before each fraction, allowing to maximize treatment accuracy and precision. In this study, we evaluate automatic three-dimensional intensity-based rigid registration (RR) methods for prostate setup correction using CBCT scans and study the impact of rectal distension on registration quality.
METHODS: We retrospectively analyzed 115 CBCT scans of 10 prostate patients. CT-to-CBCT registration was performed using (a) global RR, (b) bony RR, or (c) bony RR refined by a local prostate RR using the CT clinical target volume (CTV) expanded with 1-to-20-mm varying margins. After propagation of the manual CT contours, automatic CBCT contours were generated. For evaluation, a radiation oncologist manually delineated the CTV on the CBCT scans. The propagated and manual CBCT contours were compared using the Dice similarity and a measure based on the bidirectional local distance (BLD). We also conducted a blind visual assessment of the quality of the propagated segmentations. Moreover, we automatically quantified rectal distension between the CT and CBCT scans without using the manual CBCT contours and we investigated its correlation with the registration failures. To improve the registration quality, the air in the rectum was replaced with soft tissue using a filter. The results with and without filtering were compared.
RESULTS: The statistical analysis of the Dice coefficients and the BLD values resulted in highly significant differences (p<10(-6)) for the 5-mm and 8-mm local RRs vs the global, bony and 1-mm local RRs. The 8-mm local RR provided the best compromise between accuracy and robustness (Dice median of 0.814 and 97% of success with filtering the air in the rectum). We observed that all failures were due to high rectal distension. Moreover, the visual assessment confirmed the superiority of the 8-mm local RR over the bony RR.
CONCLUSION: The most successful CT-to-CBCT RR method proved to be the 8-mm local RR. We have shown the correlation between its registration failures and rectal distension. Furthermore, we have provided a simple (easily applicable in routine) and automatic method to quantify rectal distension and to predict registration failure using only the manual CT contours
Symmetry breaking in commensurate graphene rotational stacking; a comparison of theory and experiment
Graphene stacked in a Bernal configuration (60 degrees relative rotations
between sheets) differs electronically from isolated graphene due to the broken
symmetry introduced by interlayer bonds forming between only one of the two
graphene unit cell atoms. A variety of experiments have shown that non-Bernal
rotations restore this broken symmetry; consequently, these stacking varieties
have been the subject of intensive theoretical interest. Most theories predict
substantial changes in the band structure ranging from the development of a Van
Hove singularity and an angle dependent electron localization that causes the
Fermi velocity to go to zero as the relative rotation angle between sheets goes
to zero. In this work we show by direct measurement that non-Bernal rotations
preserve the graphene symmetry with only a small perturbation due to weak
effective interlayer coupling. We detect neither a Van Hove singularity nor any
significant change in the Fermi velocity. These results suggest significant
problems in our current theoretical understanding of the origins of the band
structure of this material.Comment: 7 pages, 6 figures, submitted to PR
- …