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Abstract

This paper proposes a very fast method for blindly approximating a nonlinear map-
ping which transforms a sum of random variables. The estimation is surprisingly
good even when the basic assumption is not satisfied. We use the method for provid-
ing a good initialization for inverting post-nonlinear mixtures and Wiener systems.
Experiments show that the algorithm speed is strongly improved and the asymptotic
performance is preserved with a very low extra computational cost.
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1 Introduction

Blind Separation of independent sources (BSS) is a basic problem in signal
processing, which has been considered intensively in the last fifteen years,

� This work has been partly funded by the European project BLInd Source Sep-
aration and applications (BLISS, IST 1999-14190) and by the Universitat de Vic
under the grant R0912.∗ Corresponding author

Email addresses: jordi.sole@uvic.es (J. Solé-Casals),
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Fig. 1. The mixing-separating system for PNL mixtures.

mainly for linear (instantaneous as well as convolutive) mixtures. More re-
cently, a few researchers (6; 5; 7; 2; 10; 8; 4; 11) addressed the problem of
source separation in nonlinear mixtures, whose observations are e = f(s),
where f(.) is an invertible nonlinear mapping. Especially, Taleb and Jutten
(8) have studied a special and realistic case of nonlinear mixtures, called post
nonlinear (PNL) mixtures which are separable. As shown in Fig. 1, this two-
stage system consists of a linear mixing matrix, followed by componentwise
nonlinear distortions. It then provides the mixing observations:

ei(t) = fi(
∑
j

aijsj(t)), i = 1, . . . , n (1)

where sj(t), j = 1, . . . , n are the independent sources, ei(t) is the i-th obser-
vation, aij denotes the entries of the unknown mixing matrix A, and fi is the
unknown nonlinear mapping on the component i.

With a suitable parameterization, the problem of blind inversion of Wiener
systems (Fig. 2) is equivalent to the source separation problem in PNL mix-
tures (9). Its output writes as

e(t) = f(
∑
k

h(k)s(t − k)) (2)

where s(t) is the independent and identically distributed (iid) input, e(t) is
the observation, h(k) denotes the entries of the unknown filter h and f is the
unknown nonlinear mapping, assumed invertible and memoryless.

Blind separation or inversion of the above models requires to estimate the
inverses of the nonlinear mapping and of the linear part (mixing matrix or
filter). This can be done by minimizing the mutual information of the inversion
structure output. However, it leads to slow algorithms, since the two parts are
in cascade and optimized with the same criterion.

In this paper, we propose a simple and very fast method for roughly estimating
the inverse of the nonlinear mapping. This estimation provides a good initial-
ization point, which can be used for any algorithm, remaining unchanged the
asymptotic performance, but increasing strongly the algorithm speed, with a
very small extra computational cost. Section 2 explains the principles. Section
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Fig. 2. A Wiener system consists of a filter followed by a distortion

3 shows experimentally the robustness and the performance of the method,
before a short conclusion.

2 Principles

2.1 The basic assumption

In (1), consider the signal just before the nonlinear mapping. The i-th com-
ponent, xi(t) =

∑
j aijsj(t), is a weighted sum of random variables. According

to the Central Limit Theorem, Xi tends toward a Gaussian random variable.
The nonlinear mapping fi changes the distribution, and consequently we can
assume that the random variable Ei = fi(Xi) is far from Gaussian. Then,
we propose to estimate the inverse of fi, as the nonlinear mapping gi which
enforces the random variable Zi = gi(Ei) to be Gaussian. Of course, the Gaus-
sian assumption will be satisfied if the number of sources sj is large enough.
For a small number of sources, the assumption is coarse. The robustness of
the method, with respect to this assumption, will be discussed in Section 3.

Similarly, in the Wiener systems the filtered signal, x(t) =
∑

k h(k)s(t − k),
just before the nonlinearity, is a weighted sum of random variables. According
to the Central Limit Theorem, the random variable X, associated to x(t),
tends to be a Gaussian random variable. Of course, the vicinity to a Gaussian
variable depends on the filter (especially on its number of taps), but X is
closer to a Gaussian distribution than S. We then propose to approximate the
inverse of f(·) by the function g(·) such that g(E) is Gaussian.

In the next section, since the two problems are very similar, we drop the index
i for simplifying the notations.

2.2 Cumulative density function

The simplest approach for computing gi is based on the property of the cu-
mulative density function (cdf). Consider the random variable E, and denote
its cdf FE(u) = Pr(E < u) where Pr() denotes the probability. The random
variable U = FE(E) is then uniformly distributed in [0, 1]. Denoting Φ(u)
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Fig. 3. The system for approximating nonlinearity

the Gaussian cdf, which transforms a unit variance Gaussian variable into a
uniform random variable in [0, 1], it is clear that Φ−1(U) is a unit variance
Gaussian random variable. Then, a simple approximation of the inverse g of
the nonlinear mapping f is (see Fig. 3):

ĝ = Φ−1 ◦ FE (3)

2.3 Maximization of Shannon entropy

Let pZ(u) denote the probability density function of Z, the Shannon entropy
of the unit variance random variable Z, defined by:

H(Z) =
∫
− log pZ(u)pZ(u)du (4)

is maximum if Z is Gaussian (1). Then g can be estimated so that H(Z) =
H(g(E)) is maximum (under the constraint of unit variance).

2.4 Algorithms

Using the previous results, one can propose two algorithms for the rough
estimation of the inverse of the nonlinear mapping f . The first algorithm is
based on the formula (3). The Matlab code is very simple and very fast. A
second algorithm, based on (4), consists in adjusting a nonlinear mapping g so
that the Shannon’s entropy of Z is maximum under the constraint Ez2 = 1.
Although the second idea is still quite simple, it leads to an algorithm which is
much more complicated and longer to converge than the previous one. Hence,
in the following, we only consider the algorithm based on (3).
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Fig. 4. Kurtosis of STL (solid line) and STG (dashed line) distributions versus a

3 Experimental results

3.1 Protocol

In order to test the robustness of the main assumption of the method (Gaus-
sianization of x), we did experiments using source signals whose distribution
is the sum of two Laplacian (STL) or two Gaussian (STG) distributions. STL
signals are interesting because one can obtain positive as well as negative signs
of kurtosis by adjusting one or two parameters. As shown in (3), the pdf of
the STL signal is:

p(x) =
b

4
[exp(−b|x − a|) + exp(−b|x + a|)] (5)

and its kurtosis is:

Kx = 2
6 − a4b4

4 + 4a2b2 + a4b4
(6)

Clearly the sign of the kurtosis can change according to the value of the
parameters a and b:Kx ≥ 0 if 0 < ab ≤ 6

1
4 and Kx > 0 if ab > 6

1
4 . We will

use this signal, with b = 1 and a in the range [0.5, 3], i.e. the two Laplacian
distributions only differ from the mean, (+a or −a). The kurtosis of STL
versus a is plotted in figure 4 (solid line).

In order to compare the results with the optimal (Gaussian) signal, we use
STG signals. Each Gaussian distribution only differs by its mean (+a or −a).
The kurtosis is again a function of the distance 2a between the means of the
two distributions. It is equal to Kx = −2a4/(1 + a2)2, and is plotted versus a
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Table 1
Filters used in the experiments

Low-pass filters :

h1 = [1, 0.5]

h2 = [−0.1,−0.6579,−0.1]

h3 = [1, 0.7,−0.5, 0.2]

Band-pass filters :

h4 = [−0.1, 0.9, 0.1]

h5 = [−0.1, 0, 0.9, 0,−0.1]

h6 = [−0.0082, 0,−0.1793, 0, 0.6579, 0,−0.1793, 0,−0.0082]

High-pass filters :

h7 = [1,−0.8]

h8 = [−0.1, 0.6579,−0.1]

h9 = [−0.1793, 0.6579,−0.1793, 0,−0.0082]

All-pass filter

h10 = [1]

in Fig. 4 (dashed line).

Mixing of variables can be done according to either linear mixtures A or
linear filtering h. Each process (mixing or filtering) provides a sum of random
variables which is closer to the Gaussian. For simplicity and due to the lack
of space, we restrict the results to linear filtering according to (2), but similar
results are obtained with (1). In fact, a n-tap filter provides a weighted sum of n
delayed signals, similar to the mixture of n sources with the same distribution.
In the source separation problem, sources will have different distributions, but
the mixtures are still a weighted sum of sources and tend toward a Gaussian.

Then, the STL or STG signal feeds a Wiener system. Ten different filters
(low-pass, high-pass or band-pass with various orders, see table 1) have been
used for providing filtered signals with various distributions 1 . In Fig. 5 we
plot the kurtosis of s(t) versus the kurtosis of x(t) for 13 inputs s(t) with
various values of kurtosis and for the ten filters of Table 1. The figure shows,
as expected, that the kurtosis of the filtered signal x(t) (which is a weigthed
sum of random variables) is moved towards zero which is the kurtosis value
of the Gaussian kurtosis: the more taps the filter has, the closer to zero the

1 As explained in the previous paragraph, a study with mixtures of 2 to 6 sources

will give very similar results
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Fig. 5. Kurtosis of the input signal s versus kurtosis of the filtered signal x, for the

ten filters of Table 1

kurtosis of the sum is ; the closer to zero the kurtosis of s(t) is, the closer to
zero the kurtosis of the sum x(t) is. Then, the nonlinear mapping f provides
e(t) = f(x(t)). We first check, as expected by theory, that the algorithm is
completely independent of f since, ∀f the function Φ−1 ◦ FE ◦ f transforms
the random variable X to a Gaussian variable Z. In fact, the accuracy of the
estimation only depends on the distribution of X.

3.2 Results

The accuracy index ε of the compensation will be simply the empirical mean
square error 2 :

ε =
1

T

T∑
t=1

[(Φ−1 ◦ FE ◦ f)(x(t)) − x(t)]2 (7)

which measures the divergence between Φ−1◦FE ◦f(x) and the linear function
x.

Fig. 6 and 7 show the accuracy index versus the kurtosis of the filtered signals
x(t), for STG and STL cases, obtained with the different sources and filters.
One can remark that the error is minimum when the signal kurtosis is close
to zero, i.e. X is close to a Gaussian, and increases as the kurtosis moves
away from zero. As expected, the efficacy of the method is only related on the

2 For computing ε, x(t) and z(t) = (Φ−1 ◦ FE ◦ f)(x(t)) have to be normalized
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Fig. 6. Accuracy index ε for STG distributions versus kurtosis
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Fig. 7. Accuracy index ε for STL distributions versus kurtosis

distribution of X, just before the nonlinearity f : the closer to the Gaussian the
distribution is, the closer to zero the accuracy index ε is. In Fig. 8, we show
an example of the best (bottom) and the worst (up) compensations obtained
in STL case. The best approximation corresponds to a kurtosis very close to
zero (Kx = 0.0238) and the worst case to Kx = −1.2631.

3.3 Application to blind inversion of PNL mixtures and Wiener systems

This experiment consists of 10 runs with STL sources whose kurtosis varies in
[−1.7, +6.3]. The PNL mixtures is characterized by hard nonlinearities fi(u) =

8



Table 2
Performance of PNL with or without initialization

average std. min max

PI with init. (dB) 16.1 3.2 10.5 20

PI without init. (dB) 15.6 3.6 9.7 20.2

CS with init. 12.0 9.4 2 30

CS without init. 35.5 18.2 11 78

0.1u + tanh(10u), i = 1, 2 and the following mixing matrix

A =


 1 0.4

0.7 1


 (8)

The kurtoses of the linear mixtures X vary in the range [−1.2, +5.6]. The
nonlinear part of separating structure is initialized with the method detailed
above, and the linear part is initialized so that outputs are spatially decor-
related, i.e. EyyT = I. With this starting parameters, we used the algo-
rithm (8). Two performance indexes are measured, after normalisation of yi:
PI = 10 log(E[s2

i ]/E[(yi − si)
2]), which measures the separation performance,

and the convergence speed, CS, i.e. the iteration number from which PI is
over 90% of the asymptotic PI. The PIs (without (dashed line) and with
(solid line) initialization) versus iterations of one typical run are shown in Fig.
9. The results (average, standard deviation, minimum and maximum values
of PI and CS) of the 10 runs are presented in the Table 2.

The second set of experiments consists of 25 runs, in which the sources are 25
random STL signals s(t) with kurtosis in the range [−1.73, 0.79] filtered by the
Wiener system, consisting of the filter h = [1, 0.5] and the nonlinear mapping
f(u) = tan(3u). The kurtosis of x(t), after the linear filter, is in the range
[−1.15, 0, 78]. The nonlinear part of the separating structure is initialized by
the method proposed in this paper, while the linear filter w is initialized so
that its output y(t) is temporally decorrelated. Fig. 10 shows the PI’s for one
run versus iterations, obtained with the algorithm (9) without (dashed line)
and with (solid line) initialization. The table 3 give the averages, standard de-
viations, minimum and maximum of PI and CS, with and without algorithm
initialization.

In the two experiments, one observes that the starting point does not affect
the asymptotic performance since we use (with or without initialization) the
same algorithm. On the contrary, the starting point leads to a significant con-
vergence speed improvement, whatever the kurtosis of X is, i.e. even if the
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Table 3
Performance of blind Wiener system inversion with or without initialization

average std. min max

PI with init. (dB) 17.5 3.3 10.2 23.9

PI without init. (dB) 15.4 3.5 9.6 23.3

CS with init. 12.3 15.6 1 44

CS without init. 89.7 37.1 34 154
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Fig. 8. Worst (up) and best (bottom) nonlinear function approximations for STL

signals

approximation of g is very coarse. Moreover, in a few cases (with very partic-
ular sources, or very strong nonlinear mapping f) where algorithms without
initialization fail, algorithms with initialization converge. Finally, if the kurto-
sis of X is far from Gaussian, the approximation ĝ will be coarse; but provided
that f is strongly nonlinear, the starting condition ĝ ◦ f is closer to linearity
than f , hence better.

4 Conclusion

In this paper, we propose a very simple and fast method for blindly approx-
imating a nonlinear mapping. The method is based on the assumption that
the input variable of the nonlinear mapping is Gaussian due to mixture or
filtering. The results show the method is robust to this assumption. We then
recommend to use this approximation for providing a good starting point in
post nonlinear BSS or Wiener system inversion algorithms: with a very low
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Fig. 9. PI (in dB) versus iterations for separating PNL without (dashed) or with

(solid) initialization
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Fig. 10. PI (in dB) versus iterations for inverting Wiener system without (dashed)

or with (solid) initialization

cost and the same SNR (PI), the average number of iterations for achieving
convergence is divided by a coefficient 3 to 7.
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