1,690 research outputs found

    The difference that tenure makes

    Get PDF
    This paper argues that housing tenures cannot be reduced to either production relations or consumption relations. Instead, they need to be understood as modes of housing distribution, and as having complex and dynamic relations with social classes. Building on a critique of both the productionist and the consumptionist literature, as well as of formalist accounts of the relations between tenure and class, the paper attempts to lay the foundations for a new theory of housing tenure. In order to do this, a new theory of class is articulated, which is then used to throw new light on the nature of class-tenure relations

    Guest editorial: Promoting cultural competency in the nursing care of LGBT patients

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.none- editoria

    The effect of galaxy mass ratio on merger--driven starbursts

    Full text link
    We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger--driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disk galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local Universe. We find that the merger--driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger--driven star formation and test that it is insensitive to uncertainties in the feedback parameterization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disk and suppresses merger--driven star formation for large mass ratio mergers. Direct, co--planar merging orbits produce the largest tidal disturbance and yield that most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of SPH employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.Comment: 26 pages, 21 figures, submitted to MNRA

    Simulations of Dust in Interacting Galaxies I: Dust Attenuation

    Full text link
    A new Monte-Carlo radiative-transfer code, Sunrise, is used in conjunction with hydrodynamic simulations of major galaxy mergers to calculate the effects of dust in such systems. The simulations are in good agreement with observations of dust absorption in starburst galaxies, and the dust has a profound effect on their appearance. The dust attenuation increases with luminosity such that at peak luminosities ~90% of the bolometric luminosity is absorbed by dust. In general, the detailed appearance of the merging event depends on the stage of the merger and the geometry of the encounter. The fraction of bolometric energy absorbed by the dust, however, is a robust quantity that can be predicted from the intrinsic properties bolometric luminosity, baryonic mass, star-formation rate, and metallicity of the system. This paper presents fitting formulae, valid over a wide range of masses and metallicities, from which the absorbed fraction of luminosity (and consequently also the infrared dust luminosity) can be predicted. The attenuation of the luminosity at specific wavelengths can also be predicted, albeit with a larger scatter due to the variation with viewing angle. These formulae for dust attenuation appear to be valid for both isolated and interacting galaxies, are consistent with earlier studies, and would be suitable for inclusion in theoretical models, e.g. semi-analytic models of galaxy formation.Comment: 12 pages, 10 figures, submitted to Ap

    PEER Testbed Study on a Laboratory Building: Exercising Seismic Performance Assessment

    Get PDF
    From 2002 to 2004 (years five and six of a ten-year funding cycle), the PEER Center organized the majority of its research around six testbeds. Two buildings and two bridges, a campus, and a transportation network were selected as case studies to “exercise” the PEER performance-based earthquake engineering methodology. All projects involved interdisciplinary teams of researchers, each producing data to be used by other colleagues in their research. The testbeds demonstrated that it is possible to create the data necessary to populate the PEER performancebased framing equation, linking the hazard analysis, the structural analysis, the development of damage measures, loss analysis, and decision variables. This report describes one of the building testbeds—the UC Science Building. The project was chosen to focus attention on the consequences of losses of laboratory contents, particularly downtime. The UC Science testbed evaluated the earthquake hazard and the structural performance of a well-designed recently built reinforced concrete laboratory building using the OpenSees platform. Researchers conducted shake table tests on samples of critical laboratory contents in order to develop fragility curves used to analyze the probability of losses based on equipment failure. The UC Science testbed undertook an extreme case in performance assessment—linking performance of contents to operational failure. The research shows the interdependence of building structure, systems, and contents in performance assessment, and highlights where further research is needed. The Executive Summary provides a short description of the overall testbed research program, while the main body of the report includes summary chapters from individual researchers. More extensive research reports are cited in the reference section of each chapter

    Nanostructure of cellulose microfibrils in spruce wood

    Get PDF
    The structure of cellulose microfibrils in wood is not known in detail, despite the abundance of cellulose in woody biomass and its importance for biology, energy, and engineering. The structure of the microfibrils of spruce wood cellulose was investigated using a range of spectroscopic methods coupled to small-angle neutron and wide-angle X-ray scattering. The scattering data were consistent with 24-chain microfibrils and favored a “rectangular” model with both hydrophobic and hydrophilic surfaces exposed. Disorder in chain packing and hydrogen bonding was shown to increase outwards from the microfibril center. The extent of disorder blurred the distinction between the I alpha and I beta allomorphs. Chains at the surface were distinct in conformation, with high levels of conformational disorder at C-6, less intramolecular hydrogen bonding and more outward-directed hydrogen bonding. Axial disorder could be explained in terms of twisting of the microfibrils, with implications for their biosynthesis

    Morphologies of z~0.7 AGN host galaxies in CANDELS : no trend of merger incidence with AGN luminosity

    Get PDF
    PS would like to acknowledge funding through grant ASI I/005/11/0. DKoo would like to acknowledge funding through grant NSF AST-0808133. SJ acknowledges financial support from the EC through an ERC grant StG-257720.The processes that trigger active galactic nuclei (AGN) remain poorly understood. While lower luminosity AGN may be triggered by minor disturbances to the host galaxy, stronger disturbances are likely required to trigger luminous AGN. Major wet mergers of galaxies are ideal environments for AGN triggering since they provide large gas supplies and galaxy scale torques. There is however little observational evidence for a strong connection between AGN and major mergers. We analyse the morphological properties of AGN host galaxies as a function of AGN and host galaxy luminosity and compare them to a carefully matched sample of control galaxies. AGN are X-ray selected in the redshift range 0.5 < z < 0.8 and have luminosities 41 ≲ log (LX [erg s−1]) ≲ 44.5. ‘Fake AGN’ are simulated in the control galaxies by adding point sources with the magnitude of the matched AGN. We find that AGN host and control galaxies have comparable asymmetries, Sérsic indices and ellipticities at rest frame ∼950 nm. AGN host galaxies show neither higher average asymmetries nor higher fractions of very disturbed objects. There is no increase in the prevalence of merger signatures with AGN luminosity. At 95 per cent confidence we find that major mergers are responsible for <6 per cent of all AGN in our sample as well as <40 per cent of the highest luminosity AGN (log  (LX [erg s−1]) ∼ 43.5). Major mergers therefore either play only a very minor role in the triggering of AGN in the luminosity range studied or time delays are too long for merger features to remain visible.PostprintPeer reviewe

    Congenital heart diseases: post-operative appearance on multi-detector CT—a pictorial essay

    Get PDF
    Echocardiography is considered as an initial imaging modality of choice in patients with congenital heart disease (CHD), and magnetic resonance (MR) imaging is preferred for detailed functional information. Multi-detector computed tomography (CT) plays an important role in clinical practice in assessing post-operative morphological and functional information of patients with complex CHD when echocardiography and MR imaging are not contributory. Radiologists should understand and become familiar with the complex morphology and physiology of CHD, as well as with various palliative and corrective surgical procedures performed in these patients, to obtain CT angiograms with diagnostic quality and promptly recognise imaging features of normal post-operative anatomy and complications of these complex surgeries
    corecore