134 research outputs found
MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose.
Background and purposeThe purpose of this work is to present the clinical experience from the first-in-human trial of real-time tumor targeting via MLC tracking for stereotactic ablative body radiotherapy (SABR) of lung lesions.Methods and materialsSeventeen patients with stage 1 non-small cell lung cancer (NSCLC) or lung metastases were included in a study of electromagnetic transponder-guided MLC tracking for SABR (NCT02514512). Patients had electromagnetic transponders inserted near the tumor. An MLC tracking SABR plan was generated with planning target volume (PTV) expanded 5 mm from the end-exhale gross tumor volume (GTV). A clinically approved comparator plan was generated with PTV expanded 5 mm from a 4DCT-derived internal target volume (ITV). Treatment was delivered using a standard linear accelerator to continuously adapt the MLC based on transponder motion. Treated volumes and reconstructed delivered dose were compared between MLC tracking and comparator ITV-based treatment.ResultsAll seventeen patients were successfully treated with MLC tracking (70 successful fractions). MLC tracking treatment delivery time averaged 8 minutes. The time from the start of CBCT to the end of treatment averaged 22 minutes. The MLC tracking PTV for 16/17 patients was smaller than the ITV-based PTV (range -1.6% to 44% reduction, or -0.6 to 18 cc). Reductions in mean lung dose (27 cGy) and V20Gy (50 cc) were statistically significant (p ConclusionThe first treatments with lung MLC tracking have been successfully performed in seventeen SABR patients. MLC tracking for lung SABR is feasible, efficient and delivers high-precision target dose and lower normal tissue dose
Personalized Neoantigen Vaccines As Early Intervention in Untreated Patients With Lymphoplasmacytic Lymphoma: A Non-Randomized Phase 1 Trial
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints
The evolution of the urinary bladder as a storage organ: scent trails and selective pressure of the first land animals in a computational simulation
The function of waste control in all living organisms is one of the vital importance. Almost universally, terrestrial tetrapods have a urinary bladder with a storage function. It is well documented that many marine and aerial species do not have an organ of such a function, or have one with very depressed storage functionality. Bladder morphology indicates it has evolved from a thin-walled structure used for osmoregulatory purposes, as it is currently used in many marine animals. It is hypothesised that the storage function of the urinary bladder allows for an evolutionary selective advantage in reducing the likelihood of successful predation. Random walks simulating predator and prey movements with simplified scent trails were utilised to represent various stages of the hunt: Detection and pursuit. A final evolutionary model is proposed in order to display the advantages over inter-generational time scales and illustrates how a bladder may evolve from an osmoregulatory organ to one of the storage. Data sets were generated for each case and analysed indicating the viability of such advantages. From the highly consistent results, three distinct characteristics of having a storage function in the urinary bladder are suggested: reduced scent trail detection rate; increased prey–predator separation (upon scent trail detection); and a reduced probability of successful capture upon scent detection by the predator. Furthered by the evolutionary model indicating such characteristics are conserved and augmented over many generations, it is concluded that prey–predator interactions provide a large selective pressure in the evolution of the urinary bladder and its storage function
Sapling size influences shade tolerance ranking among southern boreal tree species
1 Traditional rankings of shade tolerance of trees make little reference to individual size. However, greater respiratory loads with increasing sapling size imply that larger individuals will be less able to tolerate shade than smaller individuals of the same species and that there may be shifts among species in shade tolerance with size. 2 We tested this hypothesis using maximum likelihood estimation to develop individual-tree-based models of the probability of mortality as a function of recent growth rate for seven species: trembling aspen, paper birch, yellow birch, mountain maple, white spruce, balsam fir and eastern white cedar. 3 Shade tolerance of small individuals, as quantified by risk of mortality at low growth, was mostly consistent with traditional shade tolerance rankings such that cedar > balsam fir > white spruce > yellow birch > mountain maple = paper birch > aspen. 4 Differences in growth-dependent mortality were greatest between species in the smallest size classes. With increasing size, a reduced tolerance to shade was observed for all species except trembling aspen and thus species tended to converge in shade tolerance with size. At a given level of radial growth larger trees, apart from aspen, had a higher probability of mortality than smaller trees. 5 Successional processes associated with shade tolerance may thus be most important in the seedling stage and decrease with ontogeny
Geometric uncertainty analysis of MLC tracking for lung SABR.
Purpose: The purpose of this work was to report on the geometric uncertainty for patients treated with multi-leaf collimator (MLC) tracking for lung SABR to verify the accuracy of the system.
Methods: Seventeen patients were treated as part of the MLC tracking for lung SABR clinical trial using electromagnetic beacons implanted around the tumor acting as a surrogate for target motion. Sources of uncertainties evaluated in the study included the surrogate-target positional uncertainty, the beam-surrogate tracking uncertainty, the surrogate localization uncertainty, and the target delineation uncertainty. Probability density functions (PDFs) for each source of uncertainty were constructed for the cohort and each patient. The total PDFs was computed using a convolution approach. The 95% confidence interval (CI) was used to quantify these uncertainties.
Results: For the cohort, the surrogate-target positional uncertainty 95% CIs were ±2.5 mm (-2.0/3.0 mm) in left-right (LR), ±3.0 mm (-1.6/4.5 mm) in superior-inferior (SI) and ±2.0 mm (-1.8/2.1 mm) in anterior-posterior (AP). The beam-surrogate tracking uncertainty 95% CIs were ±2.1 mm (-2.1/2.1 mm) in LR, ±2.8 mm (-2.8/2.7 mm) in SI and ±2.1 mm (-2.1/2.0 mm) in AP directions. The surrogate localization uncertainty minimally impacted the total PDF with a width of ±0.6 mm. The target delineation uncertainty distribution 95% CIs were ±5.4 mm. For the total PDF, the 95% CIs were ±5.9 mm (-5.8/6.0 mm) in LR, ±6.7 mm (-5.8/7.5 mm) in SI and ±6.0 mm (-5.5/6.5 mm) in AP.
Conclusion: This work reports the geometric uncertainty of MLC tracking for lung SABR by accounting for the main sources of uncertainties that occurred during treatment. The overall geometric uncertainty is within ±6.0 mm in LR and AP directions and ±6.7 mm in SI. The dominant uncertainty was the target delineation uncertainty. This geometric analysis helps put into context the range of uncertainties that may be expected during MLC tracking for lung SABR (ClinicalTrials.gov registration number: NCT02514512
Asymmetric reproductive isolation between terminal forms of the salamander ring species Ensatina eschscholtzii revealed by fine-scale genetic analysis of a hybrid zone
<p>Abstract</p> <p>Background</p> <p>Ring species, exemplified by salamanders of the <it>Ensatina eschscholtzii </it>complex, represent a special window into the speciation process because they allow the history of species formation to be traced back in time through the geographically differentiated forms connecting the two terminal forms of the ring. Of particular interest is the nature and extent of reproductive isolation between the geographically terminal forms, in this case <it>E. e. eschscholtzii </it>and <it>E. e. klauberi</it>. Previous studies have documented infrequent hybridization at the end of the ring. Here, we report the first fine-scale genetic analysis of a hybrid zone between the terminal forms in southern California using individual-based Bayesian analyses of multilocus genetic data to estimate levels and direction of hybridization and maximum-likelihood analysis of linkage disequilibrium and cline shape to make inferences about migration and selection in the hybrid zone.</p> <p>Results</p> <p>The center of the hybrid zone has a high proportion of hybrids, about half of which were classified as F1s. Clines are narrow with respect to dispersal, and there are significant deviations from Hardy-Weinberg equilibrium as well as nonrandom associations (linkage disequilibria) between alleles characteristic of each parental type. There is cytonuclear discordance, both in terms of introgression and the geographic position of mitochondrial versus nuclear clines. Genetic disequilibrium is concentrated on the <it>eschscholtzii </it>side of the zone. Nearly all hybrids possess <it>klauberi </it>mtDNA, indicating that most hybrids are formed from female <it>klauberi </it>mating with male <it>eschscholtzii </it>or male hybrids (but not vice versa).</p> <p>Conclusions</p> <p>Our results are consistent with a tension zone trapped at an ecotone, with gene combinations characteristic of <it>klauberi </it>showing up on the <it>eschscholtzii </it>side of the zone due to asymmetric hybridization. We suggest that the observed asymmetry is best explained by increased discriminatory power of <it>eschscholtzii </it>females, or asymmetric postzygotic isolation. The relatively high frequency of hybrids, particularly F1s, contrasts with other contacts between the terminal forms, and with other contacts between other divergent <it>Ensatina </it>lineages, highlighting the diverse outcomes of secondary contact within a single species complex.</p
Population genomics of speciation and admixture
The application of population genomics to the understanding of speciation has led to the emerging field of speciation genomics. This has brought new insight into how divergence builds up within the genome during speciation and is also revealing the extent to which species can continue to exchange genetic material despite reproductive barriers. It is also providing powerful new approaches for linking genotype to phenotype in admixed populations. In this chapter, we give an overview of some of the methods that have been used and some of the novel insights gained. We also outline some of the pitfalls of the most commonly used methods and possible problems with interpretation of the results
- …