408 research outputs found
Powdery mildew infection of susceptible and resistant hosts
Imperial Users onl
Insulator-to-metal transition of SrTiO3:Nb single crystal surfaces induced by Ar+ bombardment
In this paper, the effect of Ar+ bombardment of SrTiO3:Nb surface layers is
investigated on the macro- and nanoscale using surface-sensitive methods. After
bombardment, the stoichiometry and electronic structure are changed distinctly
leading to an insulator-to-metal transition related to the change of the Ti "d"
electron from d0 to d1 and d2. During bombardment, conducting islands are
formed on the surface. The induced metallic state is not stable and can be
reversed due to a redox process by external oxidation and even by
self-reoxidation upon heating the sample to temperatures of 300{\deg}C.Comment: 4 pages, 4 figure
Hafnium carbide formation in oxygen deficient hafnium oxide thin films
On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO)
contaminated with adsorbates of carbon oxides, the formation of hafnium carbide
(HfC) at the surface during vacuum annealing at temperatures as low as 600
{\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of
the HfC surface layer related to a transformation from insulating into
metallic state is monitored in situ. In contrast, for fully stoichiometric
HfO thin films prepared and measured under identical conditions, the
formation of HfC was not detectable suggesting that the enhanced adsorption
of carbon oxides on oxygen deficient films provides a carbon source for the
carbide formation. This shows that a high concentration of oxygen vacancies in
carbon contaminated hafnia lowers considerably the formation energy of hafnium
carbide. Thus, the presence of a sufficient amount of residual carbon in
resistive random access memory devices might lead to a similar carbide
formation within the conducting filaments due to Joule heating
Inhomogeneity of donor doping in SrTiO3 substrates studied by fluorescence-lifetime imaging microscopy
Fluorescence-lifetime imaging microscopy (FLIM) was applied to investigate
the donor distribution in SrTiO3 single crystals. On the surfaces of Nb- and
La-doped SrTiO3, structures with different fluorescence intensities and
lifetimes were found that could be related to different concentrations of Ti3+.
Furthermore, the inhomogeneous distribution of donors caused a non-uniform
conductivity of the surface, which complicates the production of potential
electronic devices by the deposition of oxide thin films on top of doped single
crystals. Hence, we propose FLIM as a convenient technique (length scale: 1
m) for characterizing the quality of doped oxide surfaces, which could
help to identify appropriate substrate materials
Unintentional F doping of the surface of SrTiO3(001) etched in HF acid -- structure and electronic properties
We show that the HF acid etch commonly used to prepare SrTiO3(001) for
heteroepitaxial growth of complex oxides results in a non-negligible level of F
doping within the terminal surface layer of TiO2. Using a combination of x-ray
photoelectron spectroscopy and scanned angle x-ray photoelectron diffraction,
we determine that on average ~13 % of the O anions in the surface layer are
replaced by F, but that F does not occupy O sites in deeper layers. Despite
this perturbation to the surface, the Fermi level remains unpinned, and the
surface-state density, which determines the amount of band bending, is driven
by factors other than F doping. The presence of F at the STO surface is
expected to result in lower electron mobilities at complex oxide
heterojunctions involving STO substrates because of impurity scattering.
Unintentional F doping can be substantially reduced by replacing the HF-etch
step with a boil in deionized water, which in conjunction with an oxygen tube
furnace anneal, leaves the surface flat and TiO2 terminated.Comment: 18 pages, 7 figure
Self-reduction of the native TiO2(110) surface during cooling after thermal annealing - in-operando investigations
We investigate the thermal reduction of TiO2 in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells
Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale
Stable and switchable polarization of ferroelectric materials opens a
possibility to electrically control their functional behavior. A particularly
promising approach is to employ ferroelectric tunnel junctions where the
polarization reversal in a ferroelectric barrier changes the tunneling current
across the junction. Here, we demonstrate the reproducible tunneling
electroresistance effect using a combination of Piezoresponse Force Microscopy
(PFM) and Conducting Atomic Force Microscopy (C-AFM) techniques on
nanometer-thick epitaxial BaTiO3 single crystal thin films on SrRuO3 bottom
electrodes. Correlation between ferroelectric and electronic transport
properties is established by the direct nanoscale visualization and control of
polarization and tunneling current in BaTiO3 films. The obtained results show a
change in resistance by about two orders of magnitude upon polarization
reversal on a lateral scale of 20 nm at room temperature. These results are
promising for employing ferroelectric tunnel junctions in non-volatile memory
and logic devices, not involving charge as a state variable.Comment: 18 pages, 4 figure
Structural and electronic properties of Pb1-xCdxTe and Pb1-xMnxTe ternary alloys
A systematic theoretical study of two PbTe-based ternary alloys, Pb1-xCdxTe
and Pb1-xMnxTe, is reported. First, using ab initio methods we study the
stability of the crystal structure of CdTe - PbTe solid solutions, to predict
the composition for which rock-salt structure of PbTe changes into zinc-blende
structure of CdTe. The dependence of the lattice parameter on Cd (Mn) content x
in the mixed crystals is studied by the same methods. The obtained decrease of
the lattice constant with x agrees with what is observed in both alloys. The
band structures of PbTe-based ternary compounds are calculated within a
tight-binding approach. To describe correctly the constituent materials new
tight-binding parameterizations for PbTe and MnTe bulk crystals as well as a
tight-binding description of rock-salt CdTe are proposed. For both studied
ternary alloys, the calculated band gap in the L point increases with x, in
qualitative agreement with photoluminescence measurements in the infrared. The
results show also that in p-type Pb1-xCdxTe and Pb1-xMnxTe mixed crystals an
enhancement of thermoelectrical power can be expected.Comment: 10 pages, 13 figures, submitted to Physical Review
Molecular Mechanisms Leading from Periodontal Disease to Cancer
Periodontitis is prevalent in half of the adult population and raises critical health concerns as it has been recently associated with an increased risk of cancer. While information about the topic remains somewhat scarce, a deeper understanding of the underlying mechanistic pathways promoting neoplasia in periodontitis patients is of fundamental importance. This manuscript presents the literature as well as a panel of tables and figures on the molecular mechanisms of Porphyromonas gingivalis and Fusobacterium nucleatum, two main oral pathogens in periodontitis pathology, involved in instigating tumorigenesis. We also present evidence for potential links between the RANKL–RANK signaling axis as well as circulating cytokines/leukocytes and carcinogenesis. Due to the nonconclusive data associating periodontitis and cancer reported in the case and cohort studies, we examine clinical trials relevant to the topic and summarize their outcome
Umwandlung cyclischer Hydrazine
Im ersten Teil dieser Arbeit wird die stickstoffanaloge Hofmann-Eliminierung an Hydraziniumsalzen, die durch Umsetzung von cyclischen Hydrazinen mit verschiedenen Alkylierungsmitteln erhalten werden, beschrieben. Als Basen werden hierbei Natriumalkoholate oder Natriumamid eingesetzt. Die bei der Eliminierung gebildete Iminfunktion wird durch Zugabe von Natriumborhydrid, Natriumbordeuterid oder Kaliumcyanid in einer nucleophilen Addition abgefangen. Aus den erhaltenen Diaminen wird auf den Mechanismus der Eliminierung zurückgeschlossen.
Der zweite Teil der Arbeit beschäftigt sich mit der von-Braun-Reaktion an cyclischen Hydrazinen. Die Reaktion des jeweiligen Hydrazins mit Bromcyan liefert neben einem Cyanamid als weiteres Produkt das Hydrobromid des Hydrazins
- …