A systematic theoretical study of two PbTe-based ternary alloys, Pb1-xCdxTe
and Pb1-xMnxTe, is reported. First, using ab initio methods we study the
stability of the crystal structure of CdTe - PbTe solid solutions, to predict
the composition for which rock-salt structure of PbTe changes into zinc-blende
structure of CdTe. The dependence of the lattice parameter on Cd (Mn) content x
in the mixed crystals is studied by the same methods. The obtained decrease of
the lattice constant with x agrees with what is observed in both alloys. The
band structures of PbTe-based ternary compounds are calculated within a
tight-binding approach. To describe correctly the constituent materials new
tight-binding parameterizations for PbTe and MnTe bulk crystals as well as a
tight-binding description of rock-salt CdTe are proposed. For both studied
ternary alloys, the calculated band gap in the L point increases with x, in
qualitative agreement with photoluminescence measurements in the infrared. The
results show also that in p-type Pb1-xCdxTe and Pb1-xMnxTe mixed crystals an
enhancement of thermoelectrical power can be expected.Comment: 10 pages, 13 figures, submitted to Physical Review