69 research outputs found

    Time-Multiplexed Measurements of Nonclassical Light at Telecom Wavelengths

    Get PDF
    We report the experimental reconstruction of the statistical properties of an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecom wavelengths, with almost perfect photon-number correlations. We used a photon-number-resolving time-multiplexed detector based on a fiber-optical setup and a pair of avalanche photodiodes. By resorting to a germane data-pattern tomography, we assess the properties of the nonclassical light states states with unprecedented precision.Comment: 4.5 pages, 5 color figues. Comments welcome

    Efficient algorithm for optimizing data pattern tomography

    Full text link
    We give a detailed account of an efficient search algorithm for the data pattern tomography proposed by J. Rehacek, D. Mogilevtsev, and Z. Hradil [Phys. Rev. Lett.~\textbf{105}, 010402 (2010)], where the quantum state of a system is reconstructed without a priori knowledge about the measuring setup. The method is especially suited for experiments involving complex detectors, which are difficult to calibrate and characterize. We illustrate the approach with the case study of the homodyne detection of a nonclassical photon state.Comment: 5 pages, 5 eps-color figure

    Incomplete quantum state estimation: a comprehensive study

    Full text link
    We present a detailed account of quantum state estimation by joint maximization of the likelihood and the entropy. After establishing the algorithms for both perfect and imperfect measurements, we apply the procedure to data from simulated and actual experiments. We demonstrate that the realistic situation of incomplete data from imperfect measurements can be handled successfully.Comment: 11 pages, 10 figure

    Quantum polarization tomography of bright squeezed light

    Full text link
    We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribution to represent states. In the limit of localized and bright states, the Wigner function can be approximated by an inverse three-dimensional Radon transform. We compare this direct reconstruction with the results of a maximum likelihood estimation, finding an excellent agreement.Comment: 15 pages, 5 figures. Contribution to New Journal of Physics, Focus Issue on Quantum Tomography. Comments welcom

    Towards quantum 3d imaging devices

    Get PDF
    We review the advancement of the research toward the design and implementation of quantum plenoptic cameras, radically novel 3D imaging devices that exploit both momentum–position entanglement and photon–number correlations to provide the typical refocusing and ultra-fast, scanning-free, 3D imaging capability of plenoptic devices, along with dramatically enhanced performances, unattainable in standard plenoptic cameras: diffraction-limited resolution, large depth of focus, and ultra-low noise. To further increase the volumetric resolution beyond the Rayleigh diffraction limit, and achieve the quantum limit, we are also developing dedicated protocols based on quantum Fisher information. However, for the quantum advantages of the proposed devices to be effective and appealing to end-users, two main challenges need to be tackled. First, due to the large number of frames required for correlation measurements to provide an acceptable signal-to-noise ratio, quantum plenoptic imaging (QPI) would require, if implemented with commercially available high-resolution cameras, acquisition times ranging from tens of seconds to a few minutes. Second, the elaboration of this large amount of data, in order to retrieve 3D images or refocusing 2D images, requires high-performance and time-consuming computation. To address these challenges, we are developing high-resolution single-photon avalanche photodiode (SPAD) arrays and high-performance low-level programming of ultra-fast electronics, combined with compressive sensing and quantum tomography algorithms, with the aim to reduce both the acquisition and the elaboration time by two orders of magnitude. Routes toward exploitation of the QPI devices will also be discussed

    Navigating institutional pressure in state-socialist and democratic regimes: The case of movement brontosaurus

    Get PDF
    Using the case of Movement Brontosaurus, a Czech organization founded in state socialist times, this article investigates how civic associations and nongovernmental organizations seeking to promote alternatives to the status quo respond to institutional pressures in different political and social contexts. The case shows that under state socialism, Brontosaurus appeared to conform to state mandates and societal expectations. However, its formal structure was decoupled from many activities to obscure its oppositional intent.After the transition to democracy, the organization was only able to maintain its place in society after it aligned its structure and practices with each other and openly expressed its alternative agenda. The findings demonstrate how social change and alternative lifestyle organizations vary their responses to institutional pressure in ways that enable them to realize their values and pursue their missions while accounting for the political and social contexts in which they are embedded

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites

    Carbon Dioxide Evolution from Some Strip Mine Spoils

    No full text
    corecore