136 research outputs found
Energy and Momentum Transfer via Coulomb Frictions in Relativistic Two Fluids
We numerically calculate the energy and momentum transfer rates due to
Coulomb scattering between two fluids moving with a relative velocity. The
results are fitted by simple functions. The fitting formulae are useful to
simulate outflows from active galactic nuclei and compact high energy sources.Comment: 29 pages, 11 figures. accepted for publication in ApJ
Formal Specification and Testing of a Management Architecture
The importance of network and distributed systems management to supply and maintain services required by users has led to a demand for management facilities. Open network management is assisted by representing the system resources to be managed as objects, and providing standard services and protocols for interrogating and manipulating these objects. This paper examines the application of formal description techniques to the specification of managed objects by presenting a case study in the specification and testing of a management architecture. We describe a formal specification of a management architecture suitable for scheduling and distributing services across nodes in a distributed system. In addition, we show how formal specifications can be used to generate conformance tests for the management architecture
Are Particles in Advection-Dominated Accretion Flows Thermal?
We investigate the form of the momentum distribution function for protons and
electrons in an advection-dominated accretion flow (ADAF). We show that for all
accretion rates, Coulomb collisions are too inefficient to thermalize the
protons. The proton distribution function is therefore determined by the
viscous heating mechanism, which is unknown. The electrons, however, can
exchange energy quite efficiently through Coulomb collisions and the emission
and absorption of synchrotron photons. We find that for accretion rates greater
than \sim 10^{-3} of the Eddington accretion rate, the electrons have a thermal
distribution throughout the accretion flow. For lower accretion rates, the
electron distribution function is determined by the electron's source of
heating, which is primarily adiabatic compression. Using the principle of
adiabatic invariance, we show that an adiabatically compressed collisionless
gas maintains a thermal distribution until the particle energies become
relativistic. We derive a new, non-thermal, distribution function which arises
for relativistic energies and provide analytic formulae for the synchrotron
radiation from this distribution. Finally, we discuss its implications for the
emission spectra from ADAFs.Comment: 29 pages (Latex), 3 Figures. Submitted to Ap
Scaling Laws for Advection Dominated Flows: Applications to Low Luminosity Galactic Nuclei
We present analytical scaling laws for self-similar advection dominated
flows. The spectra from these systems range from 10 - 10 Hz, and
are determined by considering cooling of electrons through synchrotron,
bremsstrahlung, and Compton processes. We show that the spectra can be quite
accurately reproduced without detailed numerical calculations, and that there
is a strong testable correlation between the radio and X-ray fluxes from these
systems. We describe how different regions of the spectrum scale with the mass
of the accreting black hole, , the accretion rate of the gas, , and
the equilibrium temperature of the electrons, . We show that the universal
radio spectral index of 1/3 observed in most elliptical galaxies (Slee et al.
1994) is a natural consequence of self-absorbed synchrotron radiation from
these flows. We also give expressions for the total luminosity of these flows,
and the critical accretion rate, , above which the advection
solutions cease to exist. We find that for most cases of interest the
equilibrium electron temperature is fairly insensitive to , , and
parameters in the model. We apply these results to low luminosity black holes
in galactic nuclei. We show that the problem posed by Fabian & Canizares (1988)
of whether bright elliptical galaxies host dead quasars is resolved, as pointed
out recently by Fabian & Rees (1995), by considering advection-dominated flows.Comment: 30 pages, 5 postscript files. Accepted to ApJ. Also available
http://cfa-www.harvard.edu/~rohan/publications.htm
Pair plasma relaxation time scales
By numerically solving the relativistic Boltzmann equations, we compute the
time scale for relaxation to thermal equilibrium for an optically thick
electron-positron plasma with baryon loading. We focus on the time scales of
electromagnetic interactions. The collisional integrals are obtained directly
from the corresponding QED matrix elements. Thermalization time scales are
computed for a wide range of values of both the total energy density (over 10
orders of magnitude) and of the baryonic loading parameter (over 6 orders of
magnitude). This also allows us to study such interesting limiting cases as the
almost purely electron-positron plasma or electron-proton plasma as well as
intermediate cases. These results appear to be important both for laboratory
experiments aimed at generating optically thick pair plasmas as well as for
astrophysical models in which electron-positron pair plasmas play a relevant
role.Comment: Phys. Rev. E, in pres
Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery
The fracturing of glaciers and ice shelves in Antarctica influences their dynamics and stability. Hence, data on the evolving distribution of crevasses are required to better understand the evolution of the ice sheet, though such data have traditionally been difficult and time-consuming to generate. Here, we present an automated method of mapping crevasses on grounded and floating ice with the application of convolutional neural networks to Sentinel-1 synthetic aperture radar backscatter data. We apply this method across Antarctica to images acquired between 2015 and 2022, producing a 7.5-year record of composite fracture maps at monthly intervals and 50 m spatial resolution and showing the distribution of crevasses around the majority of the ice sheet margin. We develop a method of quantifying changes to the density of ice shelf fractures using a time series of crevasse maps and show increases in crevassing on Thwaites and Pine Island ice shelves over the observational period, with observed changes elsewhere in the Amundsen Sea dominated by the advection of existing crevasses. Using stress fields computed using the BISICLES ice sheet model, we show that much of this structural change has occurred in buttressing regions of these ice shelves, indicating a recent and ongoing link between fracturing and the developing dynamics of the Amundsen Sea sector.</p
Distinguishing Solar Flare Types by Differences in Reconnection Regions
Observations show that magnetic reconnection and its slow shocks occur in
solar flares. The basic magnetic structures are similar for long duration event
(LDE) flares and faster compact impulsive (CI) flares, but the former require
less non-thermal electrons than the latter. Slow shocks can produce the
required non-thermal electron spectrum for CI flares by Fermi acceleration if
electrons are injected with large enough energies to resonate with scattering
waves. The dissipation region may provide the injection electrons, so the
overall number of non-thermal electrons reaching the footpoints would depend on
the size of the dissipation region and its distance from the chromosphere. In
this picture, the LDE flares have converging inflows toward a dissipation
region that spans a smaller overall length fraction than for CI flares. Bright
loop-top X-ray spots in some CI flares can be attributed to particle trapping
at fast shocks in the downstream flow, the presence of which is determined by
the angle of the inflow field and velocity to the slow shocks.Comment: 15 pages TeX and 2 .eps figures, accepted to Ap.J.Let
X-Ray spectra from protons illuminating a neutron star
We consider the interaction of a slowly rotating unmagnetized neutron star
with a hot (ion supported, ADAF) accretion flow. The virialized protons of the
ADAF penetrate into the neutron star atmosphere, heating a surface layer.
Detailed calculations are presented of the equilibrium between heating by the
protons, electron thermal conduction, bremsstrahlung and multiple Compton
scattering in this layer. Its temperature is of the order 40-70 keV. Its
optical depth increases with the incident proton energy flux, and is of the
order unity for accretion at -- of the Eddington rate. At
these rates, the X-ray spectrum produced by the layer has a hard tail extending
to 100 keV, and is similar to the observed spectra of accreting neutron stars
in their hard states. The steep gradient at the base of the heated layer gives
rise to an excess of photons at the soft end of the spectrum (compared to a
blackbody) through an `inverse photosphere effect'. The differences with
respect to previous studies of similar problems are discussed, they are due
mostly to a more accurate treatment of the proton penetration process and the
vertical structure of the heated layer.Comment: Accepted for publication in A&
The X-ray spectrum of a disk illuminated by ions
The X-ray spectrum from a cool disk embedded in an ion supported torus is
computed. The interaction of the hot ions with the disk increases the hard
X-ray luminosity of the system}. A surface layer of the disk is heated by the
protons from the torus. The Comptonized spectrum produced by this layer has a
shape that depends only weakly on the incident energy flux and the distance
from the accreting compact object. It consists of a `blue bump' of
unComptonized soft photons and a flat high energy tail, reminiscent of the
observed spectra. The hard tail becomes flatter as the thermalization depth in
the cool disk is increased. Further evidence for ion illumination are the Li
abundance in the secondaries of low mass X-ray binaries and the 450 keV lines
sometimes seen in black-hole transient spectra.Comment: 7p, to appear in Monthly Notice
Testing refinements by refining tests
One of the potential benefits of formal methods is that they offer the possibility of reducing the costs of testing. A specification acts as both the benchmark against which any implementation is tested, and also as the means by which tests are generated. There has therefore been interest in developing test generation techniques from formal specifications, and a number of different methods have been derived for state based languages such as Z, B and VDM. However, in addition to deriving tests from a formal specification, we might wish to refine the specification further before its implementation. The purpose of this paper is to explore the relationship between testing and refinement. As our model for test generation we use a DNF partition analysis for operations written in Z, which produces a number of disjoint test cases for each operation. In this paper we discuss how the partition analysis of an operation alters upon refinement, and we develop techniques that allow us to refine abstract tests in order to generate test cases for a refinement. To do so we use (and extend existing) methods for calculating the weakest data refinement of a specification
- …