By numerically solving the relativistic Boltzmann equations, we compute the
time scale for relaxation to thermal equilibrium for an optically thick
electron-positron plasma with baryon loading. We focus on the time scales of
electromagnetic interactions. The collisional integrals are obtained directly
from the corresponding QED matrix elements. Thermalization time scales are
computed for a wide range of values of both the total energy density (over 10
orders of magnitude) and of the baryonic loading parameter (over 6 orders of
magnitude). This also allows us to study such interesting limiting cases as the
almost purely electron-positron plasma or electron-proton plasma as well as
intermediate cases. These results appear to be important both for laboratory
experiments aimed at generating optically thick pair plasmas as well as for
astrophysical models in which electron-positron pair plasmas play a relevant
role.Comment: Phys. Rev. E, in pres