1,107 research outputs found
Data on geochemical and hydraulic properties of a characteristic confined/unconfined aquifer system of the younger Pleistocene in northeast Germany
The paper presents a database of hydrochemical and hydraulic groundwater
measurements of a younger Pleistocene multilayered, unconfined/confined
aquifer system in NE Germany. The Institute of Landscape Hydrology of the
Leibniz Centre for Agricultural Landscape Research (ZALF) operates seven
groundwater monitoring wells in the Quillow catchment located in the Uckermark
region (federal state of Brandenburg, Germany). From July 2000 to March 2014,
water samples were collected periodically on different days of the year and at
depths between 3 and 5 m (shallow wells) and 16 and 24 m (deeper wells) below
the surface. The parameters pH value, redox potential, electric conductivity,
water temperature, oxygen content, spectral absorption coefficient and
concentration of hydrogen carbonate, ammonium, phosphate, chloride, bromide,
nitrite, sulfate, sodium, potassium, magnesium, calcite, dissolved organic
carbon, iron(II) and manganese were determined for each sample
(doi:10.4228/ZALF.2000.266). The measurements, taken over a period of 14
years, include a high variation of hydraulic situations represented by a
corresponding database of 19 000 recorded groundwater heads. The hydraulic
head was measured between 2000 and 201
Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos
We investigate the sensitivity of tritium -decay experiments for
keV-scale sterile neutrinos. Relic sterile neutrinos in the keV mass range can
contribute both to the cold and warm dark matter content of the universe. This
work shows that a large-scale tritium beta-decay experiment, similar to the
KATRIN experiment that is under construction, can reach a statistical
sensitivity of the active-sterile neutrino mixing of . The effect of uncertainties in the known theoretical corrections to
the tritium -decay spectrum were investigated, and found not to affect
the sensitivity significantly. It is demonstrated that controlling uncorrelated
systematic effects will be one of the main challenges in such an experiment.Comment: 24 pages, 16 figure
Определение эффективности нейтронного детектора из пластического сцинтиллятора o100?200 мм
Рассчитывается и экспериментально проверяется эффективность детектора. к нейтронам сверхвысоких (десятки и сотни МэВ) энергий
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Dead layer on silicon p-i-n diode charged-particle detectors
Semiconductor detectors in general have a dead layer at their surfaces that
is either a result of natural or induced passivation, or is formed during the
process of making a contact. Charged particles passing through this region
produce ionization that is incompletely collected and recorded, which leads to
departures from the ideal in both energy deposition and resolution. The silicon
\textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a
dead layer. We have constructed a detailed Monte Carlo model for the passage of
electrons from vacuum into a silicon detector, and compared the measured energy
spectra to the predicted ones for a range of energies from 12 to 20 keV. The
comparison provides experimental evidence that a substantial fraction of the
ionization produced in the "dead" layer evidently escapes by diffusion, with
46% being collected in the depletion zone and the balance being neutralized at
the contact or by bulk recombination. The most elementary model of a thinner
dead layer from which no charge is collected is strongly disfavored.Comment: Manuscript submitted to NIM
Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches
A combined statistical analysis of the experimental results of the LSND and
KARMEN \numubnueb oscillation search is presented. LSND has evidence for
neutrino oscillations that is not confirmed by the KARMEN experiment. This
joint analysis is based on the final likelihood results for both data sets. A
frequentist approach is applied to deduce confidence regions. At a combined
confidence level of 36%, there is no area of oscillation parameters compatible
with both experiments. For the complementary confidence of 1-0.36=64%, there
are two well defined regions of oscillation parameters (sin^2(2th),Dm^2)
compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.
A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole
Thermal Wightman functions of a massless scalar field are studied within the
framework of a ``near horizon'' static background model of an extremal R-N
black hole. This model is built up by using global Carter-like coordinates over
an infinite set of Bertotti-Robinson submanifolds glued together. The
analytical extendibility beyond the horizon is imposed as constraints on
(thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It
turns out that only the Bertotti-Robinson vacuum state, i.e. , satisfies
the above requirement. Furthermore the extension of this state onto the whole
manifold is proved to coincide exactly with the vacuum state in the global
Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem
for the Minkowski space-time in terms of Wightman functions holds with
vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum
restricted to a Bertotti-Robinson region, resulting a pure state there, has
vanishing entropy despite of the presence of event horizons. Some comments on
the real extreme R-N black hole are given
IGRT/ART phantom with programmable independent rib cage and tumor motion
Abstract
PURPOSE:
This paper describes the design and experimental evaluation of the Methods and Advanced Equipment for Simulation and Treatment in Radiation Oncology (MAESTRO) thorax phantom, a new anthropomorphic moving ribcage combined with a 3D tumor positioning system to move target inserts within static lungs.
METHODS:
The new rib cage design is described and its motion is evaluated using Vicon Nexus, a commercial 3D motion tracking system. CT studies at inhale and exhale position are used to study the effect of rib motion and tissue equivalence.
RESULTS:
The 3D target positioning system and the rib cage have millimetre accuracy. Each axis of motion can reproduce given trajectories from files or individually programmed sinusoidal motion in terms of amplitude, period, and phase shift. The maximum rib motion ranges from 7 to 20 mm SI and from 0.3 to 3.7 mm AP with LR motion less than 1 mm. The repeatability between cycles is within 0.16 mm root mean square error. The agreement between CT electron and mass density for skin, ribcage, spine hard and inner bone as well as cartilage is within 3%.
CONCLUSIONS:
The MAESTRO phantom is a useful research tool that produces programmable 3D rib motions which can be synchronized with 3D internal target motion. The easily accessible static lungs enable the use of a wide range of inserts or can be filled with lung tissue equivalent and deformed using the target motion system.status: publishe
- …
