28 research outputs found
A computerized simulation of the occlusal surface in equine cheek teeth: A simplified model
Equine mastication, as well as dental wear patterns, is highly important for the development of treatments in equine dentistry. During the last decades, the stress and strain distributions of equine teeth have been successfully simulated using finite element analysis. Yet, to date, there is no simulation available for dental tooth wear in equines. In this study, we developed a simplified two-dimensional computer simulation of dental wear. It provides a first tentative explanation for the development of the marked physiological inclination of the occlusal surface and for pathological conditions such as sharp enamel points in equine cheek teeth. The mechanical properties of the dental structures as well as the movement of the mandible during the equine chewing cycle were simulated according to previously published data. The simulation setup was optimized in preliminary test runs. Further simulations were conducted varying the lateral excursion of the mandible and the presence or absence of incisor contact during the chewing cycle. The results of simulations showed clear analogies to tooth wear patterns in living equids, including the formation of wear abnormalities. Our analysis indicates that small variations in the pattern of movement during the masticatory cycle, as well as incisor contacts, are leading to marked changes in the occlusal tooth wear patterns. This opens new research avenues to better understand the development of dental wear abnormalities in equines and might have serious implications on captive animal health, welfare, and longevity
Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces
In the last decade, the equine masticatory apparatus has received much attention. Numerous studies have emphasized the importance of the temporomandibular joint (TMJ) in the functional process of mastication. However, ultrastructural and histological data providing a basis for biomechanical and histopathological considerations are not available. The aim of the present study was to analyze the architecture of the collagen fiber apparatus in the articular surfaces of the equine TMJ to reveal typical morphological features indicating biomechanical adaptions. Therefore, the collagen fiber alignment was visualized using the split-line technique in 16 adult warmblood horses without any history of TMJ disorders. Within the central two-thirds of the articular surfaces of the articular tubercle, the articular disc and the mandibular head, split-lines ran in a correspondent rostrocaudal direction. In the lateral and medial aspects of these articular surfaces, the split-line pattern varied, displaying curved arrangements in the articular disc and punctual split-lines in the bony components. Mediolateral orientated split-lines were found in the rostral and caudal border of the articular disc and in the mandibular fossa. The complex movements during the equine chewing cycle are likely assigned to different areas of the TMJ. The split-line pattern of the equine TMJ is indicative of a relative movement of the joint components in a preferential rostrocaudal direction which is consigned to the central aspects of the TMJ. The lateral and medial aspects of the articular surfaces provide split-line patterns that indicate movements particularly around a dorsoventral axis
Equine odontoclastic tooth resorption and hypercementosis
Oral and dental diseases are common occurrences in horses. Nevertheless, dental disease are often not apparent and the short dental examination as part of general clinical evaluation is not enough to detect dental problems. Several instrumental investigations are now available beside direct oral examination in horse.
During the last years, a poorly described disorder of incisor and canine teeth and their periodontal ligament, with resorptive and proliferative changes of the calcified dental tissues, has recently been documented in aged horses (i.e. older than 15 years). Clinical signs were enlargement of the gingival area, occasionally associated with ulcerations and purulent discharge, painfulness and tooth mobility.
A chronological sequence of odontoclastic resorption followed by hypercementosis was demonstrated. EOTRH shares many features with similar dental syndromes described in humans (MIRR) and cats (FORL).
No plausible aetiopathogenesis for this syndrome has been recorded. An aetiological hypothesis proposes mechanical stress of the periodontal ligament as the initiating facto
Recommended from our members
Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces.
In the last decade, the equine masticatory apparatus has received much attention. Numerous studies have emphasized the importance of the temporomandibular joint (TMJ) in the functional process of mastication. However, ultrastructural and histological data providing a basis for biomechanical and histopathological considerations are not available. The aim of the present study was to analyze the architecture of the collagen fiber apparatus in the articular surfaces of the equine TMJ to reveal typical morphological features indicating biomechanical adaptions. Therefore, the collagen fiber alignment was visualized using the split-line technique in 16 adult warmblood horses without any history of TMJ disorders. Within the central two-thirds of the articular surfaces of the articular tubercle, the articular disc and the mandibular head, split-lines ran in a correspondent rostrocaudal direction. In the lateral and medial aspects of these articular surfaces, the split-line pattern varied, displaying curved arrangements in the articular disc and punctual split-lines in the bony components. Mediolateral orientated split-lines were found in the rostral and caudal border of the articular disc and in the mandibular fossa. The complex movements during the equine chewing cycle are likely assigned to different areas of the TMJ. The split-line pattern of the equine TMJ is indicative of a relative movement of the joint components in a preferential rostrocaudal direction which is consigned to the central aspects of the TMJ. The lateral and medial aspects of the articular surfaces provide split-line patterns that indicate movements particularly around a dorsoventral axis