73 research outputs found

    In vivo selection of Plasmodium falciparum parasites carrying the chloroquine-susceptible pfcrt K76 allele after treatment with artemether-lumefantrine in Africa

    Get PDF
    Background: Artemether-lumefantrine (AL) is a major and highly effective artemisinin-based combination therapy that is becoming increasingly important as a new first-line therapy against Plasmodium falciparum malaria. However, recrudescences occurring after AL treatment have been reported. Identification of drug-specific parasite determinants that contribute to treatment failures will provide important tools for the detection and surveillance of AL resistance. Methods: The findings from a 42-day follow-up efficacy trial in Tanzania that compared AL with sulfadoxinepyrimethamine (SP) were analyzed to identify candidate markers for lumefantrine tolerance/resistance in the chloroquine resistance transporter gene (pfcrt) and multidrug resistance gene 1 (pfmdr1). The findings were corroborated in vitro with genetically modified isogenic P. falciparum parasite lines. Results: Treatment with AL selected for the chloroquine-susceptible pfcrt K76 allele (P \u3c .0001) and, to a lesser extent, the pfmdr1 N86 (P = .048) allele among recurrent infections. These genotypes were not selected during SP treatment. No pfmdr1 gene amplifications were observed. Isogenic pfcrt-modified parasite lines demonstrated a 2-fold increase in susceptibility to lumefantrine, which was directly attributable to the K76T mutation. Conclusions: Our findings suggest that the pfcrt K76T mutation is a drug-specific contributor to enhanced P. falciparum susceptibility to lumefantrine in vivo and in vitro, and they highlight the benefit of using AL in areas affected by chloroquine-resistant P. falciparum malaria. © 2009 by the Infectious Diseases Society of America. All rights reserved

    Temporal trends of molecular markers associated with artemether- lumefantrine tolerance/resistance in Bagamoyo district, Tanzania

    Get PDF
    Background: Development and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy (ACT) constitutes a major threat to recent global malaria control achievements. Surveillance of molecular markers could act as an early warning system of ACT-resistance before clinical treatment failures are apparent. The aim of this study was to analyse temporal trends of established genotypes associated with artemether-lumefantrine tolerance/resistance before and after its deployment as first-line treatment for uncomplicated malaria in Tanzania 2006. Methods: Single nucleotide polymorphisms in the P. falciparum multidrug resistance gene 1 (pfmdr1) N86Y, Y184F, D1246Y and P. falciparum chloroquine transporter gene (pfcrt) K76T were analysed from dried blood spots collected during six consecutive studies from children with uncomplicated P. falciparum malaria in Fukayosi village, Bagamoyo District, Tanzania, between 2004-2011. Results: There was a statistically significant yearly increase of pfmdr1 N86, 184F, D1246 and pfcrt K76 between 2006-2011 from 14% to 61% (yearly OR = 1.38 [95% CI 1.25-1.52] p \u3c 0.0001), 14% to 35% (OR = 1.17 [95% CI 1.07-1.30] p = 0.001), 54% to 85% (OR = 1.21 [95% CI 1.03-1.42] p = 0.016) and 49% to 85% (OR = 1.33 [95% CI 1.17-1.51] p \u3c 0.0001), respectively. Unlike for the pfmdr1 SNP, a significant increase of pfcrt K76 was observed already between 2004-2006, from 26% to 49% (OR = 1.68 [95% CI 1.17-2.40] p = 0.005). From 2006 to 2011 the pfmdr1 NFD haplotype increased from 10% to 37% (OR = 1.25 [95% CI 1.12-1.39] p \u3c 0.0001), whereas the YYY haplotype decreased from 31% to 6% (OR = 0.73 [95% CI 0.56-0.98] p = 0.018). All 390 successfully analysed samples had one copy of the pfmdr1 gene. Conclusion: The temporal selection of molecular markers associated with artemether-lumefantrine tolerance/resistance may represent an early warning sign of impaired future drug efficacy. This calls for stringent surveillance of artemether-lumefantrine efficacy in Tanzania and emphasizes the importance of molecular surveillance as a complement to standard in vivo trials. © 2013 Malmberg et al.; licensee BioMed Central Ltd

    Efficacy of artemether-lumefantrine in treatment of malaria among under-fives and prevalence of drug resistance markers in Igombe-Mwanza, north-western Tanzania

    Get PDF
    \ud \ud Drug resistance to anti-malarials is a major public health problem worldwide. This study aimed at establishing the efficacy of artemether-lumefantrine (ACT) in Igombe-Mwanza, north-western Tanzania after a few years of ACT use, and establish the prevalence of mutations in key targets for artemisinin, chloroquine and sulphadoxine/pyrimetamine (SP) drugs. A prospective single cohort study was conducted at Igombe health centre using artemether-lumefantrine combination therapy between February 2010 and March 2011. The follow-up period was 28 days and outcome measures were according to WHO guidelines. Blood was collected on Whatman filter paper for DNA analysis. DNA extraction was done using TRIS-EDTA method, and mutations in Pfcrt, Pfmdr1, Pfdhfr, Pfdhps and Pfatp6 were detected using PCR-RFLP methods established previously. A total of 103 patients completed the 28 days follow-up. The mean haemoglobin was 8.9 g/dl (range 5.0 to 14.5 g/dl) and mean parasite density was 5,608 parasites/μl. Average parasite clearance time was 34.7 hours and all patients cleared the parasites by day 3. There was no early treatment failure in this study. Late clinical failure was seen in three (2.9%) patients and late parasitological failure (LPF) was seen in two (1.9%). PCR-corrected LPF was 1% and adequate clinical and parasitological response was 96%. The majority of parasites have wild type alleles on pfcrt 76 and pfmdr1 86 positions being 87.8% and 93.7% respectively. Mutant parasites predominated at pfdhfr gene at the main three positions 108, 51 and 59 with prevalence of 94.8%, 75.3% and 82.5% respectively. Post-treatment parasites had more wild types of pfdhps at position 437 and 540 than pre-treatment parasites. No mutation was seen in pfatp6 769 in re-infecting or recrudescing parasites. The efficacy of artemether-lumefantrine for treatment of uncomplicated malaria is still high in the study area although the rate of re-infection is higher than previously reported. Parasite clearance after 48 hours was lower compared to previous studies. The prevalence of wild type allele pfcrt 76 K and pfmdr1 86 N was high in the study area while markers for SP resistance is still high. Artemether-lumefantrine may be selecting for wild type alleles on both positions (437 and 540) of pfdhps

    Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance

    Get PDF
    Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P.falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions

    Molecular epidemiology of drug-resistant malaria in western Kenya highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since the late 1980s a series of malaria epidemics has occurred in western Kenya highlands. Among the possible factors that may contribute to the highland malaria epidemics, parasite resistance to antimalarials has not been well investigated.</p> <p>Methods</p> <p>Using parasites from highland and lowland areas of western Kenya, we examined key mutations associated with <it>Plasmodium falciparum </it>resistance to sulfadoxine – pyrimethamine and chloroquine, including dihydrofolate reductase (<it>pfdhfr</it>) and dihydropteroate synthetase (<it>pfdhps</it>), chloroquine resistance transporter gene (<it>pfcrt</it>), and multi-drug resistance gene 1 (<it>pfmdr1</it>).</p> <p>Results</p> <p>We found that >70% of samples harbored 76T <it>pfcrt </it>mutations and over 80% of samples harbored quintuple mutations (51I/59R/108N <it>pfdhfr </it>and 437G/540E <it>pfdhps</it>) in both highland and lowland samples. Further, we did not detect significant difference in the frequencies of these mutations between symptomatic and asymptomatic malaria volunteers, and between highland and lowland samples.</p> <p>Conclusion</p> <p>These findings suggest that drug resistance of malaria parasites in the highlands could be contributed by the mutations and their high frequencies as found in the lowland. The results are discussed in terms of the role of drug resistance as a driving force for malaria outbreaks in the highlands.</p

    Effectiveness of artemether-lumefantrine provided by community health workers in under-five children with uncomplicated malaria in rural Tanzania: an open label prospective study

    Get PDF
    \ud Home-management of malaria (HMM) strategy improves early access of anti-malarial medicines to high-risk groups in remote areas of sub-Saharan Africa. However, limited data are available on the effectiveness of using artemisinin-based combination therapy (ACT) within the HMM strategy. The aim of this study was to assess the effectiveness of artemether-lumefantrine (AL), presently the most favoured ACT in Africa, in under-five children with uncomplicated Plasmodium falciparum malaria in Tanzania, when provided by community health workers (CHWs) and administered unsupervised by parents or guardians at home. An open label, single arm prospective study was conducted in two rural villages with high malaria transmission in Kibaha District, Tanzania. Children presenting to CHWs with uncomplicated fever and a positive rapid malaria diagnostic test (RDT) were provisionally enrolled and provided AL for unsupervised treatment at home. Patients with microscopy confirmed P. falciparum parasitaemia were definitely enrolled and reviewed weekly by the CHWs during 42 days. Primary outcome measure was PCR corrected parasitological cure rate by day 42, as estimated by Kaplan-Meier survival analysis. This trial is registered with ClinicalTrials.gov, number NCT00454961. A total of 244 febrile children were enrolled between March-August 2007. Two patients were lost to follow up on day 14, and one patient withdrew consent on day 21. Some 141/241 (58.5%) patients had recurrent infection during follow-up, of whom 14 had recrudescence. The PCR corrected cure rate by day 42 was 93.0% (95% CI 88.3%-95.9%). The median lumefantrine concentration was statistically significantly lower in patients with recrudescence (97 ng/mL [IQR 0-234]; n = 10) compared with reinfections (205 ng/mL [114-390]; n = 92), or no parasite reappearance (217 [121-374] ng/mL; n = 70; p ≤ 0.046). Provision of AL by CHWs for unsupervised malaria treatment at home was highly effective, which provides evidence base for scaling-up implementation of HMM with AL in Tanzania.\u

    Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America

    Get PDF
    Background: In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Methods: Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Results: Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. Conclusion: The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P. falciparum and P. vivax is therefore essential also in Honduras.Swedish International Development Cooperation Agency, Department for research Cooperation (Sida-SAREC) [75007082/03]info:eu-repo/semantics/publishedVersio

    Therapeutic efficacy of artemether-lumefantrine in uncomplicated falciparum malaria in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artemisinin-based combination therapy (ACT) is the treatment of choice for uncomplicated falciparum malaria. Artemether-lumefantrine (AL), a fixed dose co-formulation, has recently been approved for marketing in India, although it is not included in the National Drug Policy for treatment of malaria. Efficacy of short course regimen (4 × 4 tablets of 20 mg artemether plus 120 mg lumefantrine over 48 h) was demonstrated in India in the year 2000. However, low cure rates in Thailand and better plasma lumefantrine concentration profile with a six-dose regimen over three days, led to the recommendation of higher dose globally. This is the first report on the therapeutic efficacy of the six-dose regimen of AL in Indian uncomplicated falciparum malaria patients. The data generated will help in keeping the alternative ACT ready for use in the National Programme as and when required.</p> <p>Methods</p> <p>One hundred and twenty four subjects between two and fifty-five years of age living in two highly endemic areas of the country (Assam and Orissa) were enrolled for single arm, open label prospective study. The standard six-dose regimen of AL was administered over three days and was followed-up with clinical and parasitological evaluations over 28 days. Molecular markers <it>msp</it>-<it>1 </it>and <it>msp</it>-2 were used to differentiate the recrudescence and reinfection among the study subjects. In addition, polymorphism in <it>pfmdr</it>1 was also carried out in the samples obtained from patients before and after the treatment.</p> <p>Results</p> <p>The PCR corrected cure rates were high at both the sites viz. 100% (n = 53) in Assam and 98.6% (n = 71) in Orissa. The only treatment failure case on D7 was a malnourished child. The drug was well tolerated with no adverse events. Patients had pre-treatment carriage of wild type codons at positions 86 (41.7%, n = 91) and 184 (91.3%, n = 91) of <it>pfmdr1 </it>gene.</p> <p>Conclusion</p> <p>AL is safe and effective drug for the treatment of acute uncomplicated falciparum malaria in India. The polymorphism in <it>pfmdr</it>1 gene is not co-related with clinical outcome. However, treatment failure can also occur due to incomplete absorption of the drug as is suspected in one case of failure at D7 in the study. AL can be a viable alternative of artesunate plus sulphadoxine/pyrimethamine (AS + SP), however, the drug should be used rationally and efficacy needs to be monitored periodically.</p

    World Antimalarial Resistance Network (WARN) II: In vitro antimalarial drug susceptibility

    Get PDF
    Intrinsic resistance of Plasmodium falciparum is clearly a major determinant of the clinical failure of antimalarial drugs. However, complex interactions between the host, the parasite and the drug obscure the ability to define parasite drug resistance in vivo. The in vitro antimalarial drug susceptibility assay determines ex-vivo growth of parasite in the presence of serial drug concentrations and, thus, eliminates host effects, such as drug metabolism and immunity. Although the sensitivity of the parasite to various antimalarials provided by such a test provides an important indicator of intrinsic parasite susceptibility, there are fundamental methodological issues that undermine comparison of in vitro susceptibility both between laboratories and within a single laboratory over time. A network of laboratories is proposed that will agree on the basic parameters of the in vitro test and associated measures of quality control. The aim of the network would be to establish baseline values of sensitivity to commonly used antimalarial agents from key regions of the world, and create a global database, linked to clinical, molecular and pharmacology databases, to support active surveillance to monitor temporal trends in parasite susceptibility. Such a network would facilitate the rapid detection of strains with novel antimalarial resistance profiles and investigate suitable alternative treatments with retained efficacy
    corecore