4,302 research outputs found

    Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints

    Get PDF
    The monadic shallow linear Horn fragment is well-known to be decidable and has many application, e.g., in security protocol analysis, tree automata, or abstraction refinement. It was a long standing open problem how to extend the fragment to the non-Horn case, preserving decidability, that would, e.g., enable to express non-determinism in protocols. We prove decidability of the non-Horn monadic shallow linear fragment via ordered resolution further extended with dismatching constraints and discuss some applications of the new decidable fragment.Comment: 29 pages, long version of CADE-26 pape

    C-terminal fusion of eGFP to the bradykinin B-2 receptor strongly affects down-regulation but not receptor internalization or signaling

    Get PDF
    A functional comparison was made between the wildtype bradykinin B, receptor (B(2)wt) and the chimera B(2)eGFP (enhanced green-fluorescent protein fused to the C-terminus of B(2)Wt), both stably expressed in HEK 293 cells. There was almost no difference in terms of ligand-inducible receptor phosphorylation and internalization, signal transduction (accumulation of inositol phosphates) or expression and affinity. However, stimulation for up to 8 h with 10 mu M bradykinin (BK) resulted in a strong decrease in surface receptors (by 60% within 5 h) in B(2)Wt, but not in B(2)eGFP. When the expression levels of both constructs where comparably reduced using a weaker promoter, long-term stimulation resulted in a reduction in surface receptors for B(2)wt(low) to less than 20% within 1 h, whereas the chimera B(2)eGFP(low) still displayed 50% binding activity after 2 h. A 1-h incubation in the absence of BK resulted in a recovery of 60% of the binding in B(2)wt(low) after 1-h stimulation with BK, but of only 20% after 7-h stimulation. In contrast, B(2)eGFP(low) levels were restored to more than 70%, even after 7-h stimulation. These data indicate that although the fusion of eGFP to B(2)wt does not affect its ligand-induced internalization, it strongly reduces the down-regulation, most likely by promoting receptor recycling over degradation

    Rational Choice and the Relevance of Irrelevant Alternatives

    Get PDF
    This experimental study investigates the inuence of irrelevant or phantom al- ternatives on subjects' choices in sequential decision making. Using experimental data from 45 subjects, we found that irrelevant alternatives bear significant rele- vance for decision making. We observe that only 38% of our subjects make the same choice after two phantom alternatives, as compared with the same decision problem when analyzed from scratch. Even allowing for a natural error rate as high as 25%, we find that between 40% and 60% of our subjects are led astray by the presence of phantom alternatives. Testing then basic postulates of rational choice, we find moderate violations of contraction monotonicity and static preference consistency, and substantial viola- tions of dynamic preference consistency. Finally we find that subjects exhibiting rational choice behaviour are far less susceptible to dependence on irrelevant alternatives than subjects which violate rational choice behaviour. Rational choice behaviour is thus a good proxy for the independence of a subject's choices of irrelevant alternatives.Independence of Irrelevant Alternatives;Phantom Alternatives;Sequential Decision Making;Rational Choice;Multiattribute Decision Making

    Linguistic processing of accented speech across the lifespan.

    Get PDF
    In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work

    Single-molecule real-time sequencing combined with optical mapping yields completely finished fungal genome

    Get PDF
    Next-generation sequencing (NGS) technologies have increased the scalability, speed, and resolution of genomic sequencing and, thus, have revolutionized genomic studies. However, eukaryotic genome sequencing initiatives typically yield considerably fragmented genome assemblies. Here, we assessed various state-of-the-art sequencing and assembly strategies in order to produce a contiguous and complete eukaryotic genome assembly, focusing on the filamentous fungus Verticillium dahliae. Compared with Illumina-based assemblies of the V. dahliae genome, hybrid assemblies that also include PacBio- generated long reads establish superior contiguity. Intriguingly, provided that sufficient sequence depth is reached, assemblies solely based on PacBio reads outperform hybrid assemblies and even result in fully assembled chromosomes. Furthermore, the addition of optical map data allowed us to produce a gapless and complete V. dahliae genome assembly of the expected eight chromosomes from telomere to telomere. Consequently, we can now study genomic regions that were previously not assembled or poorly assembled, including regions that are populated by repetitive sequences, such as transposons, allowing us to fully appreciate an organism’s biological complexity. Our data show that a combination of PacBio-generated long reads and optical mapping can be used to generate complete and gapless assemblies of fungal genomes. IMPORTANCE Studying whole-genome sequences has become an important aspect of biological research. The advent of nextgeneration sequencing (NGS) technologies has nowadays brought genomic science within reach of most research laboratories, including those that study nonmodel organisms. However, most genome sequencing initiatives typically yield (highly) fragmented genome assemblies. Nevertheless, considerable relevant information related to genome structure and evolution is likely hidden in those nonassembled regions. Here, we investigated a diverse set of strategies to obtain gapless genome assemblies, using the genome of a typical ascomycete fungus as the template. Eventually, we were able to show that a combination of PacBiogenerated long reads and optical mapping yields a gapless telomere-to-telomere genome assembly, allowing in-depth genome sanalyses to facilitate functional studies into an organism’s biology

    Financial stability evaluation of banks of the Russian Federation

    Get PDF
    In this paper we propose the model for evaluating financial stability of the Russian Federation banks by using discriminatory analysis. The statistical significance of the model was established. Critical value of the resulting was measured. The result of this research can be used in the area of banking

    Ion induced weight loss and thermal gravimetric analysis of ion-irradiated poly-vinyl formal

    Get PDF

    Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    Full text link
    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.Comment: 4 pages, 2 figures, 1 table. Submitted to the proceedings for the Ninth International Conference on Inertial Fusion Sciences and Applications, IFSA 201

    Flashing annihilation term of a logistic kinetic as a mechanism leading to Pareto distributions

    Full text link
    It is shown analytically that the flashing annihilation term of a Verhulst kinetic leads to the power--law distribution in the stationary state. For the frequency of switching slower than twice the free growth rate this provides the quasideterministic source of a Levy noises at the macroscopic level.Comment: 1 fi
    corecore