
HAL Id: hal-01657026
https://hal.inria.fr/hal-01657026

Submitted on 6 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decidability of the Monadic Shallow Linear First-Order
Fragment with Straight Dismatching Constraints

Andreas Teucke, Christoph Weidenbach

To cite this version:
Andreas Teucke, Christoph Weidenbach. Decidability of the Monadic Shallow Linear First-Order
Fragment with Straight Dismatching Constraints. CADE 2017 - 26th International Conference on
Automated Deduction, Aug 2017, Gothenburg, Sweden. pp.202-219, �10.1007/978-3-319-63046-5_13�.
�hal-01657026�

https://hal.inria.fr/hal-01657026
https://hal.archives-ouvertes.fr

Decidability of the Monadic Shallow Linear First-Order

Fragment with Straight Dismatching Constraints∗

Andreas Teucke Christoph Weidenbach
Max-Planck Institut für Informatik

Saarland Informatics Campus
66123 Saarbrücken

December 6, 2017

Abstract

The monadic shallow linear Horn fragment is well-known to be decidable and has many
application, e.g., in security protocol analysis, tree automata, or abstraction refinement.
It was a long standing open problem how to extend the fragment to the non-Horn case,
preserving decidability, that would, e.g., enable to express non-determinism in protocols.
We prove decidability of the non-Horn monadic shallow linear fragment via ordered res-
olution further extended with dismatching constraints and discuss some applications of
the new decidable fragment.

1 Introduction

Motivated by the automatic analysis of security protocols, the monadic shallow linear Horn
(MSLH) fragment was shown to be decidable in [22]. In addition to the restriction to
monadic Horn clauses, the main restriction of the fragment is positive literals of the form
S(f(x1, . . . , xn)) or S(x) where all xi are different, i.e., all terms are shallow and linear. The
fragment can be finitely saturated by superposition (ordered resolution) where negative literals
with non-variable arguments are always selected. As a result, productive clauses with respect
to the superposition model operator IN have the form S1(x1), . . . , Sn(xn)→ S(f(x1, . . . , xn)).
Therefore, the models of saturated MSLH clause sets can both be represented by tree au-
tomata [6] and shallow linear sort theories [8]. The models are typically infinite. The decid-
ability result of MSLH clauses was rediscovered in the context of tree automata research [7]
where in addition DEXPTIME-completeness of the MSLH fragment was shown. The fragment
was further extended by disequality constraints [12, 13] still motivated by security protocol
analysis [14]. Although from a complexity point of view, the difference between Horn clause
fragments and the respective non-Horn clause fragments is typically reflected by membership
in the deterministic vs. the non-deterministic respective complexity fragment, for monadic
shallow linear clauses so far there was no decidability result for the non-Horn case.

The results of this paper close this gap. We show the monadic shallow linear non-Horn
(MSL) clause fragment to be decidable by superposition (ordered resolution). From a security

∗Appeared in: Proceedings of CADE 26, LNCS 10395, pp. 202-219, Springer

1

protocol application point of view, non-Horn clauses enable a natural representation of non-
determinism. Our second extension to the fragment are unit clauses with disequations of the
form s 6≈ t, where s and t are not unifiable. Due to the employed superposition calculus, such
disequations do not influence saturation of an MSL clause set, but have an effect on potential
models. They can rule out identification of syntactically different ground terms as it is, e.g.,
desired in the security protocol context for syntactically different messages or nonces. Our
third extension to the fragment are straight dismatching constraints. These constraints are
incomparable to the disequality constraints mentioned above [12, 13]. They do not strictly
increase the expressiveness of the MSL theory, but enable up to exponentially more compact
saturations. For example, the constrained clause

(S(x), T (y)→ S(f(x, y)); y 6= f(x′, f(a, y′)))
over constants a, b describes the same set of ground clauses as the six unconstrained clauses

S(x), T (a)→ S(f(x, a)) S(x), T (b)→ S(f(x, b)) . . .
S(x), T (f(b, y′))→ S(f(x, f(b, y′)))

S(x), T (f(f(x′′, y′′), y′))→ S(f(x, f(f(x′′, y′′), y′)).
Furthermore, for a satisfiability equivalent transformation into MSL clauses, the nested terms
in the positive literals would have to be factored out by the introduction of further predicates
and clauses. E.g., the first clause is replaced by the two MSL clauses S(x), T (a), R(y) →
S(f(x, y)) and R(a) where R is a fresh monadic predicate. The constrained clause belongs
to the MSL(SDC) fragment. Altogether, the resulting MSL(SDC) fragment is shown to be
decidable in Section 3.

The introduction of straight dismatching constraints (SDCs) enables an improved refine-
ment step of our approximation refinement calculus [18]. Before, several clauses were needed
to rule out a specific instance of a clause in an unsatisfiable core. For example, if due to
a linearity approximation from clause S(x), T (x) → S(f(x, x)) to S(x), T (x), S(y), T (y) →
S(f(x, y)) an instance {x 7→ f(a, x′), y 7→ f(b, y′)} is used in the proof, before [18] sev-
eral clauses were needed to replace S(x), T (x) → S(f(x, x)) in a refinement step in order
to rule out this instance. With straight dismatching constraints the clause S(x), T (x) →
S(f(x, x)) is replaced by the two clauses S(f(a, x)), T (f(a, x)) → S(f(f(a, x), f(a, x))) and
(S(x), T (x)→ S(f(x, x));x 6= f(a, y)). For the improved approximation refinement approach
(FO-AR) presented in this paper, any refinement step results in just two clauses, see Section 4.
The additional expressiveness of constraint clauses comes almost for free, because necessary
computations, like, e.g., checking emptiness of SDCs, can all be done in polynomial time, see
Section 2.

In addition to the extension of the known MSLH decidability result and the improved
approximation refinement calculus FO-AR, we discuss in Section 5 the potential of the
MSL(SDC) fragment in the context of FO-AR, Theorem 4.12, and its prototypical implemen-
tation in SPASS-AR (http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/spass-ar.tgz).
It turns out that for clause sets containing certain structures, FO-AR is superior to ordered
resolution/superposition [1] and instance generating methods [10]. The paper ends with a dis-
cussion on challenges and future research directions, Section 6. In favor of many illustrating
examples, most proofs and further technical details can be found in [20].

2

2 First-Order Clauses with Straight Dismatching Constraints:
MSL(SDC)

We consider a standard first-order language where letters v, w, x, y, z denote variables, f, g, h
functions, a, b, c constants, s, t terms, p, q, r positions and Greek letters σ, τ, ρ, δ are used for
substitutions. S, P,Q,R denote predicates, ≈ denotes equality, A,B atoms, E,L literals, C,D
clauses, N clause sets and V sets of variables. L is the complement of L. The signature Σ =
(F ,P) consists of two disjoint, non-empty, in general infinite sets of function and predicate
symbols F and P, respectively. The set of all terms over variables V is T (F ,V). If there are
no variables, then terms, literals and clauses are called ground, respectively. A substitution σ
is denoted by pairs {x 7→ t} and its update at x by σ[x 7→ t]. A substitution σ is a grounding
substitution for V if xσ is ground for every variable x ∈ V.

The set of free variables of an atom A (term t) denoted by vars(A) (vars(t)). A position is
a sequence of positive integers, where ε denotes the empty position. As usual t|p = s denotes
the subterm s of t at position p, which we also write as t[s]p, and t[p/s′] then denotes the
replacement of s with s′ in t at position p. These notions are extended to literals and multiple
positions.

A predicate with exactly one argument is called monadic. A term is complex if it is not a
variable and shallow if it has at most depth one. It is called linear if there are no duplicate
variable occurrences. A literal, where every argument term is shallow, is also called shallow. A
variable and a constant are called straight. A term f(s1, . . . , sn) is called straight, if s1, . . . , sn
are different variables except for at most one straight term si.

A clause is a multiset of literals which we write as an implication Γ→ ∆ where the atoms
in the multiset ∆ (the succedent) denote the positive literals and the atoms in the multiset
Γ (the antecedent) the negative literals. We write � for the empty clause. If Γ is empty we
omit →, e.g., we can write P (x) as an alternative of → P (x). We abbreviate disjoint set
union with sequencing, for example, we write Γ,Γ′ → ∆, L instead of Γ ∪ Γ′ → ∆ ∪ {L}. A
clause E,E,Γ→ ∆ is equivalent to E,Γ→ ∆ and we call them equal modulo duplicate literal
elimination. If every term in ∆ is shallow, the clause is called positive shallow. If all atoms
in ∆ are linear and variable disjoint, the clause is called positive linear. A clause Γ → ∆ is
called an MSL clause, if it is (i) positive shallow and linear, (ii) all occurring predicates are
monadic, (iii) no equations occur in ∆, and (iv) no equations occur in Γ or Γ = {s ≈ t} and
∆ is empty where s and t are not unifiable. MSL is the first-order clause fragment consisting
of MSL clauses. Clauses Γ, s ≈ t → ∆ where Γ, ∆ are non-empty and s, t are not unifiable
could be added to the MSL fragment without changing any of our results. Considering the
superposition calculus, it will select s ≈ t. Since the two terms are not unifiable, no inference
will take place on such a clause and the clause will not contribute to the model operator. In
this sense such clauses do not increase the expressiveness of the fragment.

An atom ordering ≺ is an irreflexive, well-founded, total ordering on ground atoms. It is
lifted to literals by representing A and ¬A as multisets {A} and {A,A}, respectively. The
multiset extension of the literal ordering induces an ordering on ground clauses. The clause
ordering is compatible with the atom ordering; if the maximal atom in C is greater than the
maximal atom in D then D ≺ C. We use ≺ simultaneously to denote an atom ordering and
its multiset, literal, and clause extensions. For a ground clause set N and clause C, the set
N≺C = {D ∈ N | D ≺ C} denotes the clauses of N smaller than C.

A Herbrand interpretation I is a - possibly infinite - set of ground atoms. A ground atom

3

A is called true in I if A ∈ I and false, otherwise. I is said to satisfy a ground clause
C = Γ → ∆, denoted by I � C, if ∆ ∩ I 6= ∅ or Γ 6⊆ I. A non-ground clause C is satisfied
by I if I � Cσ for every grounding substitution σ. An interpretation I is called a model of
N , I � N , if I � C for every C ∈ N . A model I of N is considered minimal with respect
to set inclusion, i.e., if there is no model I ′ with I ′ ⊂ I and I ′ � N . A set of clauses N is
satisfiable, if there exists a model that satisfies N . Otherwise, the set is unsatisfiable.

A disequation t 6= s is an atomic straight dismatching constraint if s and t are variable
disjoint terms and s is straight. A straight dismatching constraint π is a conjunction of
atomic straight dismatching constraints. Given a substitution σ, πσ =

∧
i∈I tiσ 6= si.

lvar(π) :=
⋃

i∈I vars(ti) are the left-hand variables of π and the depth of π is the maximal
term depth of the si. A solution of π is a grounding substitution δ such that for all i ∈ I, tiδ
is not an instance of si, i.e., there exists no σ such that tiδ = siσ. A dismatching constraint
is solvable if it has a solution and unsolvable, otherwise. Whether a straight dismatching
constraint is solvable, is decidable in linear-logarithmic time [19]. > and ⊥ represent the true
and false dismatching constraint, respectively.

We define constraint normalization π↓ as the normal form of the following rewriting rules
over straight dismatching constraints.

π ∧ f(t1, . . . , tn) 6= y ⇒ ⊥
π ∧ f(t1, . . . , tn) 6= f(y1, . . . , yn) ⇒ ⊥
π ∧ f(t1, . . . , tn) 6= f(s1, . . . , sn) ⇒ π ∧ ti 6= si if si is complex

π ∧ f(t1, . . . , tn) 6= g(s1, . . . , sm) ⇒ π

π ∧ x 6= s ∧ x 6= sσ ⇒ π ∧ x 6= s

Note that f(t1, . . . , tn) 6= f(s1, . . . , sn) normalizes to ti 6= si for some i, where si is the one
straight complex argument of f(s1, . . . , sn). Furthermore, the depth of π↓ is less or equal to
the depth of π and both have the same solutions.

A pair of a clause and a constraint (C;π) is called a constrained clause. Given a substi-
tution σ, (C;π)σ = (Cσ;πσ). Cδ is called a ground clause of (C;π) if δ is a solution of π.
G((C;π)) is the set of ground instances of (C;π). If G((C;π)) ⊆ G((C ′;π′)), then (C;π) is
an instance of (C ′;π′). If G((C;π)) = G((C ′;π′)), then (C;π) and (C ′;π′) are called variants.
A Herbrand interpretation I satisfies (C;π), if I � G((C;π)). A constrained clause (C;π) is
called redundant in N if for every D ∈ G((C;π)), there exist D1, . . . , Dn in G(N)≺D such that
D1, . . . , Dn � D. A constrained clause (C ′;π′) is called a condensation of (C;π) if C ′ ⊂ C
and there exists a substitution σ such that, πσ = π′, π′ ⊆ π, and for all L ∈ C there is an
L′ ∈ C ′ with Lσ = L′. A finite unsatisfiable subset of G(N) is called an unsatisfiable core of
N .

An MSL clause with straight dismatching constraints is called an MSL(SDC) clause with
MSL(SDC) being the respective first-order fragment. Note that any clause set N can be
transformed into an equivalent constrained clause set by changing each C ∈ N to (C;>).

3 Decidability of the MSL(SDC) fragment

In the following we will show that the satisfiability of the MSL(SDC) fragment is decidable.
For this purpose we will define ordered resolution with selection on constrained clauses [19] and
show that with an appropriate ordering and selection function, saturation of an MSL(SDC)
clause set terminates.

4

For the rest of this section we assume an atom ordering ≺ such that a literal ¬Q(s) is
not greater than a literal P (t[s]p), where p 6= ε. For example, a KBO where all symbols have
weight one has this property.

Definition 3.1 (sel). Given an MSL(SDC) clause (C;π) = (S1(t1), . . . , Sn(tn)→ P1(s1), . . . , Pm(sm);π).
The Superposition Selection function sel is defined by Si(ti) ∈ sel(C) if (1) ti is not a variable
or (2) t1, . . . , tn are variables and ti /∈ vars(s1, . . . , sm) or (3) {t1, . . . , tn} ⊆ vars(s1, . . . , sm)
and for some 1 ≤ j ≤ m, sj = ti.

The selection function sel (Definition 3.1) ensures that a clause Γ→ ∆ can only be resolved
on a positive literal if Γ contains only variables, which also appear in ∆ at a non-top position.
For example:

sel(P (f(x)), P (x), Q(z)→ Q(x), R(f(y)) = {P (f(x))}
sel(P (x), Q(z)→ Q(x), R(f(y))) = {Q(z)}
sel(P (x), Q(y)→ Q(x), R(f(y))) = {P (x)}

sel(P (x), Q(y)→ Q(f(x)), R(f(y))) = ∅.
Note that given an MSL(SDC) clause (C;π) = (S1(t1), . . . , Sn(tn) → P1(s1), . . . Pm(sm);π),
if some Si(ti) is maximal in C, then at least one literal is selected.

Definition 3.2. A literal A is called [strictly] maximal in a constrained clause (C ∨ A;π) if
and only if there exists a solution δ of π such that for all literals B in C, Bδ � Aδ [Bδ ≺ Aδ].

Definition 3.3 (SDC-Resolution).

(Γ1 → ∆1, A ; π1) (Γ2, B → ∆2 ; π2)

((Γ1,Γ2 → ∆1,∆2)σ ; (π1 ∧ π2)σ↓)
, if

1. σ = mgu(A,B) 2. (π1 ∧ π2)σ↓ is solvable
3. Aσ is strictly maximal in (Γ1 → ∆1, A;π1)σ and sel(Γ1 → ∆1, A) = ∅
4. B ∈ sel(Γ2, B → ∆2)
5. sel(Γ2, B → ∆2) = ∅ and ¬Bσ maximal in (Γ2, B → ∆2;π2)σ

Definition 3.4 (SDC-Factoring).

(Γ→ ∆, A,B ; π)

((Γ→ ∆, A)σ;πσ↓)
, if

1. σ = mgu(A,B) 2. sel(Γ→ ∆, A,B) = ∅
3. Aσ is maximal in (Γ→ ∆, A,B;π)σ 4. πσ↓ is solvable

Note that while the above rules do not operate on equations, we can actually allow unit
clauses that consist of non-unifiable disequations, i.e., clauses s ≈ t→ where s and t are not
unifiable. There are no potential superposition inferences on such clauses as long as there
are no positive equations. So resolution and factoring suffice for completeness. Nevertheless,
clauses such as s ≈ t → affect the models of satisfiable problems. Constrained Resolution
and Factoring are sound.

Definition 3.5 (Saturation). A constrained clause setN is called saturated up to redundancy,
if for every inference between clauses in N the result (R;π) is either redundant in N or
G((R;π)) ⊆ G(N).

5

Note that our redundancy notion includes condensation and the condition G((R;π)) ⊆
G(N) allows ignoring variants of clauses.

Definition 3.6 (Partial Minimal Model Construction). Given a constrained clause set N , an
ordering ≺ and the selection function sel, we construct an interpretation IN for N , called a
partial model, inductively as follows:

IC :=

D∈G(N)⋃
D≺C

δD, where C ∈ G(N)

δD :=

{A} if D = Γ→ ∆, A

A strictly maximal, sel(D) = ∅ and ID 6� D
∅ otherwise

IN :=
⋃

C∈G(N)

δC

Clauses D with δD 6= ∅ are called productive.

Lemma 3.7 (Ordered SDC Resolution Completeness). Let N be a constrained clause set sat-
urated up to redundancy by ordered SDC-resolution with selection. Then N is unsatisfiable,
if and only if � ∈ G(N). If � 6∈ G(N) then IN |= N .

Lemma 3.8. Let N be a set of MSL(SDC) clauses without variants or uncondensed clauses
over a finite signature Σ. N is finite if there exists an integer d such that for every (C;π) ∈ N ,
depth(π)≤ d and
(1) C = S1(x1), . . . , Sn(xn), S′1(t), . . . , S′m(t)→ ∆ or
(2) C = S1(x1), . . . , Sn(xn), S′1(t), . . . , S′m(t)→ S(t),∆
with t shallow and linear, and vars(t) ∩ vars(∆) = ∅.

Lemma 3.9 (Finite Saturation). Let N be an MSL(SDC) clause set. Then N can be finitely
saturated up to redundancy by SDC-resolution with selection function sel.

Theorem 3.10 (MSL(SDC) Decidability). Satisfiability of the MSL(SDC) first-order frag-
ment is decidable.

4 Approximation and Refinement

In the following, we show how decidability of the MSL(SDC) fragment can be used to improve
the approximation refinement calculus presented in [18].

Our approach is based on a counter-example guided abstraction refinement (CEGAR)
idea. The procedure loops trough four steps: approximation, testing (un)satisfiability, lifting,
and refinement. The approximation step transforms any first-order logic clause set into the
decidable MSL(SDC) fragment while preserving unsatisfiability. The second step employs the
decidability result for MSL(SDC), Section 3, to test satisfiability of the approximated clause
set. If the approximation is satisfiable, the original problem is satisfiable as well and we are
done. Otherwise, the third step, lifting, tests whether the proof of unsatisfiability found for
the approximated clause set can be lifted to a proof of the original clause set. If so, the
original clause set is unsatisfiable and we are again done. If not, we extract a cause for the
lifting failure that always amounts to two different instantiations of the same variable in a

6

clause from the original clause set. This is resolved by the fourth step, the refinement. The
crucial clause in the original problem is replaced and instantiated in a satisfiability preserving
way such that the different instantiations do not reoccur anymore in subsequent iterations of
the loop.

As mentioned before, our motivation to use dismatching constraints is that for an un-
constrained clause the refinement adds quadratically many new clauses to the clause set. In
contrast, with constrained clauses the same can be accomplished with adding just a single new
clause. This extension is rather simple as constraints are treated the same as the antecedent
literals in the clause. Furthermore we present refinement as a separate transformation rule.

The second change compared to the previous version is the removal of the Horn approx-
imation rule, where we have now shown in Section 3 that a restriction to Horn clauses is
not required for decidability anymore. Instead, the linear and shallow approximations are
extended to apply to non-Horn clauses instead.

The approximation consists of individual transformation rules N ⇒ N ′ that are non-
deterministically applied. They transform a clause that is not in the MSL(SDC) fragment
in finite steps into MSL(SDC) clauses. Each specific property of MSL(SDC) clauses, i.e,
monadic predicates, shallow and linear positive literals, is generated by a corresponding rule:
the Monadic transformation encodes non-Monadic predicates as functions, the shallow trans-
formation extracts non-shallow subterms by introducing fresh predicates and the linear trans-
formation renames non-linear variable occurrences.

Starting from a constrained clause set N the transformation is parameterized by a single
monadic projection predicate T , fresh to N and for each non-monadic predicate P a separate
projection function fP fresh to N . The clauses in N are called the original clauses while
the clauses in N ′ are the approximated clauses. We assume all clauses in N to be variable
disjoint.

Definition 4.1. Given a predicate P , projection predicate T , and projection function fP ,
define the injective function µTP (P (~t)) := T (fp(~t)) and µTP (Q(~s)) := Q(~s) for P 6= Q. The
function is extended to [constrained] clauses, clause sets and interpretations. Given a signa-
ture Σ with non-monadic predicates P1, . . . , Pn, define µTΣ(N) := µTP1

(. . . (µTPn
(N)) . . .) and

µTΣ(I) := µTP1
(. . . (µTPn

(I)) . . .).

Monadic N ⇒MO µTP (N)

provided P is a non-monadic predicate in the signature of N .

Shallow N ∪̇ {(Γ→ E[s]p,∆;π)} ⇒SH

N ∪ {(S(x),Γl → E[p/x],∆l;π); (Γr → S(s),∆r;π)}
provided s is complex, |p| = 2, x and S fresh, Γl{x 7→ s} ∪ Γr = Γ, ∆l∪∆r = ∆, {Q(y) ∈ Γ |
y ∈ vars(E[p/x],∆l)} ⊆ Γl, {Q(y) ∈ Γ | y ∈ vars(s,∆r)} ⊆ Γr.

Linear 1 N ∪̇ {(Γ→ ∆, E′[x]p, E[x]q;π)} ⇒LI

N ∪ {(Γσ,Γ→ ∆, E′[x]p, E[q/x′];π ∧ πσ)}
provided x′ is fresh and σ = {x 7→ x′}.

Linear 2 N ∪̇ {(Γ→ ∆, E[x]p,q;π)} ⇒LI

N ∪ {(Γσ,Γ→ ∆, E[q/x′];π ∧ πσ)}

7

provided x′ is fresh, p 6= q and σ = {x 7→ x′}.

Refinement N ∪̇ {(C, π)} ⇒Ref N ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}}
provided x ∈ vars(C), t straight and vars(t) ∩ vars((C, π)) = ∅.

Note that variables are not renamed unless explicitly stated in the rule. This means that
original clauses and their approximated counterparts share variable names. We use this to
trace the origin of variables in the approximation.

The refinement transformation ⇒Ref is not needed to eventually generate MSL(SDC)
clauses, but can be used to achieve a more fine-grained approximation of N , see below.

In the shallow transformation, Γ and ∆ are separated into Γl, Γr, ∆l, and ∆r, respectively.
The separation can be almost arbitrarily chosen as long as no atom from Γ, ∆ is skipped. How-
ever, the goal is to minimize the set of shared variables, i.e., the variables of (Γ→ E[s]p,∆;π)
that are inherited by both approximation clauses, vars(Γr, s,∆r) ∩ vars(Γl, E[p/x],∆l). If
there are no shared variables, the shallow transformation is satisfiability equivalent. The con-
ditions on Γl and Γr ensure that S(x) atoms are not separated from the respective positive
occurrence of x in subsequent shallow transformation applications.

Consider the clause Q(f(x), y) → P (g(f(x), y)). The simple shallow transformation
S(x′), Q(f(x), y) → P (g(x′, y));S(f(x)) is not satisfiability equivalent – nor with any alter-
native partitioning of Γ. However, by replacing the occurrence of the extraction term f(x) in
Q(f(x), y) with the fresh variable x′, the approximation S(x′), Q(x′, y)→ P (g(x′, y));S(f(x))
is satisfiability equivalent. Therefore, we allow the extraction of s from the terms in Γl and
require Γl{x 7→ s} ∪ Γr = Γ.

We consider Linear 1 and Linear 2 as two cases of the same linear transformation rule.
Their only difference is whether the two occurrences of x are in the same literal or not. The
duplication of literals and constraints in Γ and π is not needed if x does not occur in Γ or π.

Further, consider a linear transformation N ∪ {(C;π)} ⇒LI N ∪ {(Ca;πa)}, where a fresh
variable x′ replaces an occurrence of a non-linear variable x in (C;π). Then, (Ca;πa){x′ 7→ x}
is equal to (C;π) modulo duplicate literal elimination. A similar property can be observed of
a resolvent of (Cl;π) and (Cr;π) resulting from a shallow transformation N ∪ {(C;π)} ⇒SH

N ∪ {(Cl;π), (Cr;π)}. Note that by construction, (Cl;π) and (Cr;π) are not necessarily
variable disjoint. To simulate standard resolution, we need to rename at least the shared
variables in one of them.

Definition 4.2 (⇒AP). We define⇒AP as the priority rewrite system [3] consisting of⇒Ref ,
⇒MO, ⇒SH and ⇒LI with priority ⇒Ref >⇒MO>⇒SH>⇒LI, where ⇒Ref is only applied
finitely many times.

Lemma 4.3 (⇒AP is a Terminating Over-Approximation). (i)⇒∗AP terminates, (ii) if N ⇒AP

N ′ and N ′ is satisfiable, then N is also satisfiable.

Note that ⇒Ref and ⇒MO are also satisfiability preserving transformations.

Corollary 4.4. If N ⇒∗AP N
′ and N ′ is satisfied by a model I, then µ−1

Σ (I) is a model of N .

On the basis of ⇒AP we can define an ancestor relation ⇒A that relates clauses, literal
occurrences, and variables with respect to approximation. This relation is needed in order
to figure out the exact clause, literal, variable for refinement. The definition of ⇒A itself is
rather technical [20].

8

The over-approximation of a clause set N can introduce resolution refutations that have no
corresponding equivalent in N which we consider a lifting failure. Compared to our previous
calculus [18], the lifting process is identical with the exception that there is no case for the
removed Horn transformation. We only update the definition of conflicting cores to consider
constrained clauses.

Definition 4.5 (Conflicting Core). A finite set of unconstrained clauses N⊥ is a conflicting
core of N if N⊥σ is an unsatisfiable core of N for all grounding substitutions σ. For a ground
clause D ∈ N⊥σ and (C;π) ∈ N such that D ∈ G((C;π)), the clause (C;π) is called the
instantiated clause of D. We call N⊥ complete if for every clause C ∈ N⊥ and literal L ∈ C,
there exists a clause D ∈ N⊥ with L ∈ D.

A conflicting core is a generalization of a ground unsatisfiability core that allows global
variables to act as parameters. This enables more efficient lifting and refinement compared
to a simple ground unsatisfiable core. We show some examples at the end of this section.

We discuss the potential lifting failures and the corresponding refinements only for the
linear and shallow case because lifting the satisfiability equivalent monadic and refinement
transformations always succeeds. To reiterate from our previous work: in the linear case,
there exists a clause in the conflicting core that is not an instance of the original clauses.
In the shallow case, there exists a pair of clauses whose resolvent is not an instance of the
original clauses. We combine these two cases by introducing the notion of a lift-conflict.

Definition 4.6 (Conflict). Let N ∪ {(C, π)} ⇒LI N ∪ {(Ca, πa)} and N⊥ be a complete
ground conflicting core of N ∪ {(Ca, πa)}. We call a conflict clause Cc ∈ N⊥ with the
instantiated clause (Ca, πa) a lift-conflict if Cc is not an instance of (C, π) modulo duplicate
literal elimination. Then, Cc is an instance of (Ca, πa), which we call the conflict clause of
Cc.

The goal of refinement is to instantiate the original parent clause in such a way that is
both satisfiability equivalent and prevents the lift-conflict after approximation. Solving the
refined approximation will then either necessarily produce a complete saturation or a new
refutation proof, because its conflicting core has to be different. For this purpose, we use
the refinement transformation to segment the original parent clause (C;π) into two parts
(C;π ∧ x 6= t) and (C;π){x 7→ t}.

For example, consider N and its linear transformation N ′.
→P (x, x) ⇒LI →P (x, x′)

P (a, b)→ ⇒0
AP P (a, b)→

The ground conflicting core of N ′ is
→P (a, b)

P (a, b)→
Because P (a, b) is not an instance of P (x, x), lifting fails. P (a, b) is the lift-conflict. Specif-
ically, {x 7→ a} and {x 7→ b} are conflicting substitutions for the parent variable x. We pick
{x 7→ a} to segment P (x, x) into (P (x, x);x 6= a) and P (x, x){x 7→ a}. Now, any descen-
dant of (P (x, x);x 6= a) cannot have a at the position of the first x, and any descendant of
P (x, x){x 7→ a} must have an a at the position of the second x. Thus, P (a, b) is excluded in
both cases and no longer appears as a lift-conflict.

To show that the lift-conflict will not reappear in the general case, we use that the conflict
clause and its ancestors have strong ties between their term structures and constraints.

9

Definition 4.7 (Constrained Term Skeleton). The constrained term skeleton of a term t
under constraint π, skt(t, π), is defined as the normal form of the following transformation:

(t[x]p,q;π)⇒skt (t[q/x′];π ∧ π{x 7→ x′}), where p 6= q and x′ is fresh.

The constrained term skeleton of a term t is essentially a linear version of t where the
restrictions on each variable position imposed by π are preserved. For (t, π) and a solution δ
of π, tδ is called a ground instance of (t, π).

Lemma 4.8. Let N0 ⇒∗AP Nk, (Ck;πk) in N with the ancestor clause (C0;π0) ∈ N0 and N⊥k
be a complete ground conflicting core of Nk. Let δ be a solution of πk such that Ckδ is in
N⊥k . If (L′, q′) is a literal position in (Ck;πk) with the ancestor (L, q) in (C0, π0), then (i)
L′δ|q′ is an instance of skt(L|q, π0), (ii) q = q′ if L and L′ have the same predicate, and (iii)
if L′|q′ = x and there exists an ancestor variable y of x in (C0, π0), then L|q = y.

Proof. Idea. The proof is by induction on the length of the approximation N0 ⇒∗AP Nk and a
case distinction of the first transformation N0 ⇒AP N1. Most cases are straightforward except
for case (i) of the shallow transformation. Because N⊥k is complete, any negative extraction
literal S(x)δ matches some positive literal in N⊥k which is necessarily an instance of S(s),
the extraction term. Therefore, the original term structure is preserved even after subterm
extraction.

Next, we define the notion of descendants and descendant relations to connect lift-conflicts
in ground conflicting cores with their corresponding ancestor clauses. The goal, hereby, is
that if a ground clause D is not a descendant of a clause in N , then it can never appear in a
conflicting core of an approximation of N .

Definition 4.9 (Descendants). Let N ⇒∗AP N ′, [(C;π), N] ⇒∗A [(C ′;π′), N ′] and D be a
ground instance of (C ′;π′). Then, we callD a descendant of (C;π) and define the [(C;π), N]⇒∗A
[(C ′;π′), N ′]-descendant relation⇒D that maps literals in D to literal positions in (C;π) using
the following rule:

L′δ ⇒D (L, r) if L′δ ∈ D and [r, L, (C;π), N]⇒∗A [ε, L′, (C ′;π′), N ′]

For the descendant relations it is of importance to note that while there are potentially
infinite ways that a lift-conflict Cc can be a descendant of an original clause (C;π), there
are only finitely many distinct descendant relations over Cc and (C;π). This means, if a
refinement transformation can prevent one distinct descendant relation without generating
new distinct descendant relations (Lemma 4.10), a finite number of refinement steps can
remove the lift-conflict Cc from the descendants of (C;π) (Lemma 4.11). Thereby, preventing
any conflicting cores containing Cc from being found again.

A clause (C;π) can have two descendants that are the same except for the names of
the S-predicates introduced by shallow transformations. Because the used approximation
N ⇒∗AP N ′ is arbitrary and therefore also the choice of fresh S-predicates, if D is a de-
scendant of (C;π), then any clause D′ equal to D up to a renaming of S-predicates is also
a descendant of (C;π). On the other hand, the actual important information about an S-
predicate is which term it extracts. Two descendants of (C;π) might be identical but their
S-predicate extract different terms in (C;π). For example, P (a) → S(f(a)) is a descendant
of P (x), P (y) → Q(f(x), g(f(x))) but might extract either occurrence of f(x). These cases
are distinguished by their respective descendant relations. In the example, we have either
S(f(a))⇒D (Q(f(x), g(f(x))), 1) or S(f(a))⇒D (Q(f(x), g(f(x))), 2.1).

10

Lemma 4.10. Let N0 = N ∪ {(C;π)} ⇒Ref N ∪ {(C;π ∧ x 6= t), (C;π){x 7→ t}} = N1 be
a refinement transformation and D a ground clause. If there is a [(C;π ∧ x 6= t), N1] ⇒∗A
[(C ′;π′), N2]- or [(C;π){x 7→ t}, N1] ⇒∗A [(C ′;π′), N2]-descendant relation ⇒1

D, then there is
an equal [(C;π), N0]⇒∗A [(C ′;π′), N2]-descendant relation ⇒0

D.

Proof. Let LD be a literal of D and L′ ⇒1
D (L, r). If D is a descendant of (C;π∧x 6= t), then

[r, L, (C;π∧x 6= t), N1]⇒∗A [ε, L′, (C ′;π′), N2]. Because [r, L, (C;π), N0]⇒A [r, L, (C;π∧x 6=
t), N1], L′ ⇒0

D (L, r). If D is a descendant of (C;π){x 7→ t}, the proof is analogous.

Lemma 4.11 (Refinement). Let N ⇒AP N ′ and N⊥ be a complete ground conflicting core
of N ′. If Cc ∈ N⊥ is a lift-conflict, then there exists a finite refinement N ⇒∗Ref NR such
that for any approximation NR ⇒∗AP N

′
R and ground conflicting core N⊥R of N ′R, Cc is not a

lift-conflict in N⊥R modulo duplicate literal elimination.

Theorem 4.12 (Soundness and Completeness of FO-AR). Let N be an unsatisfiable clause
set andN ′ its MSL(SDC) approximation: (i) ifN is unsatisfiable then there exists a conflicting
core of N ′ that can be lifted to a refutation in N , (ii) if N ′ is satisfiable, then N is satisfiable
too.

Proof. (Idea) By Lemma 4.3 and Lemma 4.11, where the latter can be used to show that a
core of N ′ that cannot be lifted also excludes the respective instance for unsatisfiability of
N .

Actually, Lemma 4.11 can be used to define a fair strategy on refutations in N ′ in order
to receive also a dynamically complete FO-AR calculus, following the ideas presented in [18].

In Lemma 4.11, we segment the conflict clause’s immediate parent clause. If the lifting
later successfully passes this point, the refinement is lost and will be possibly repeated. In-
stead, we can refine any ancestor of the conflict clause as long as it contains the ancestor of
the variable used in the refinement. By Lemma 4.8-(iii), such an ancestor will contain the
ancestor variable at the same positions. If we refine the ancestor in the original clause set, the
refinement is permanent because lifting the refinement steps always succeeds. Only variables
introduced by shallow transformation cannot be traced to the original clause set. However,
these shallow variables are already linear and the partitioning in the shallow transformation
can be chosen such that they are not shared variables. Assume a shallow, shared variable
y, that is used to extract the term t, in the shallow transformation of Γ → E[s]p,∆ into
S(x),Γl → E[p/x],∆l and Γr → S(s),∆r. Since ∆l ∪̇ ∆r = ∆ is a partitioning, y can only
appear in either E[p/x],∆l or S(s),∆r. If y ∈ vars(E[p/x],∆l) we instantiate Γr with {y 7→ t}
and Γl, otherwise. Now, y is no longer a shared variable.

The refinement Lemmas only guarantee a refinement for a given ground conflicting core.
In practice, however, conflicting cores contain free variables. We can always generate a ground
conflicting core by instantiating the free variables with ground terms. However, if we only
exclude a single ground case via refinement, next time the new conflicting core will likely have
overlaps with the previous one. Instead, we can often remove all ground instances of a given
conflict clause at once.

The simplest case is when unifying the conflict clause with the original clause fails be-
cause their instantiations differ at some equivalent positions. For example, consider N =
{P (x, x);P (f(x, a), f(y, b))→}. N is satisfiable but the linear transformation is unsatisfiable
with conflict clause P (f(x, a), f(y, b)) which is not unifiable with P (x, x), because the two

11

terms f(x, a) and f(y, b) have different constants at the second argument. A refinement of
P (x, x) is

(P (x, x) ;x 6= f(v, a))
(P (f(x, a), f(x, a)) ;>)

P (f(x, a), f(y, b)) shares no ground instances with the approximations of the refined clauses.
Next, assume that again unification fails due to structural difference, but this time the dif-

ferences lie at different positions. For example, consider N = {P (x, x);P (f(a, b), f(x, x))→}.
N is satisfiable but the linear transformation ofN is unsatisfiable with conflict clause P (f(a, b), f(x, x))
which is not unifiable with P (x, x) because in f(a, b) the first an second argument are different
but the same in f(x, x). A refinement of P (x, x) is

(P (x, x) ;x 6= f(a, v))
(P (f(a, x), f(a, x))) ;x 6= a)
(P (f(a, a), f(a, a))) ;>)

P (f(a, b), f(x, x)) shares no ground instances with the approximations of the refined clauses.
It is also possible that the conflict clause and original clause are unifiable by themselves,

but the resulting constraint has no solutions. For example, considerN = {P (x, x); (P (x, y)→;x 6= a ∧ x 6= b ∧ y 6= c ∧ y 6= d)}
with signature Σ = {a, b, c, d}. N is satisfiable but the linear transformation of N is unsat-
isfiable with conflict clause (→ P (x, y);x 6= a ∧ x 6= b ∧ y 6= c ∧ y 6= d). While P (x, x) and
P (x, y) are unifiable, the resulting constraint x 6= a ∧ x 6= b ∧ x 6= c ∧ x 6= d has no solutions.
A refinement of P (x, x) is

(P (x, x) ;x 6= a ∧ x 6= b)
(P (a, a) ;>)
(P (b, b) ;>)

(P (x, y);x 6= a ∧ x 6= b ∧ y 6= c ∧ y 6= d) shares no ground instances with the approximations
of the refined clauses.

Lastly, we should mention that there are cases where the refinement process does not
terminate. For example, consider the clause set N = {P (x, x);P (y, g(y))→}. N is satisfiable
but the linear transformation of N is unsatisfiable with conflict clause P (y, g(y)), which is
not unifiable with P (x, x). A refinement of P (x, x) based on the ground instance P (a, g(a))
is

(P (x, x) ;x 6= g(v))
(P (g(x), g(x)) ;>)

While P (y, g(y)) is not an instance of the refined approximation, it shares ground instances
with P (g(x), g(x′)). The new conflict clause is P (g(y), g(g(y))) and the refinement will con-
tinue to enumerate all P (gi(x), gi(x)) instances of P (x, x) without ever reaching a satisfiable
approximation. Satisfiability of first-order clause sets is undecidable, so termination cannot
be expected by any calculus, in general.

5 Experiments

In the following we discuss several first-order clause classes for which FO-AR implemented in
SPASS-AR immediately decides satisfiability but superposition and instantiation-based meth-
ods fail. We argue both according to the respective calculi and state-of-the-art implementa-
tions, in particular SPASS 3.9 [23], Vampire 4.1 [11, 21], for ordered-resolution/superposition,
iProver 2.5 [9] an implementation of Inst-Gen [10], and Darwin v1.4.5 [4] an implementation
of the model evolution calculus [5]. All experiments were run on a 64-Bit Linux computer

12

(Xeon(R) E5-2680, 2.70GHz, 256GB main memory). For Vampire and Darwin we chose the
CASC-sat and CASC settings, respectively. For iProver we set the schedule to “sat” and
SPASS, SPASS-AR were used in default mode. Please note that Vampire and iProver are
portfolio solvers including implementations of several different calculi including superposition
(ordered resolution), instance generation, and finite model finding. SPASS, SPASS-AR, and
Darwin only implement superposition, FO-AR, and model evolution, respectively.

For the first example
P (x, y)→ P (x, z), P (z, y); P (a, a)

and second example,
Q(x, x); Q(v, w), P (x, y)→ P (x, v), P (w, y); P (a, a)

the superposition calculus produces independently of the selection strategy and ordering an
infinite number of clauses of form

→P (a, z1), P (z1, z2), . . . , P (zn, a).
Using linear approximation, however, FO-AR replaces P (x, y) → P (x, z), P (z, y) and

→ Q(x, x) with P (x, y) → P (x, z), P (z′, y) and → Q(x, x′), respectively. Consequently,
ordered resolution derives → P (a, z1), P (z2, a) which subsumes any further inferences →
P (a, z1), P (z2, z3), P (z4, a). Hence, saturation of the approximation terminates immediately.
Both examples belong to the Bernays-Schönfinkel fragment, so model evolution (Darwin) and
Inst-Gen (iProver) can decide them as well. Note that the concrete behavior of superposition
is not limited to the above examples but potentially occurs whenever there are variable chains
in clauses.

On the third problem
P (x, y)→ P (g(x), z); P (a, a)

superposition derives all clauses of the form → P (g(. . . g(a) . . .), z). With a shallow ap-
proximation of P (x, y) → P (g(x), z) into S(v) → P (v, z) and P (x, y) → S(g(x)), FO-AR
(SPASS-AR) terminates after deriving → S(g(a)) and S(x)→ S(g(x)). Again, model evolu-
tion (Darwin) and Inst-Gen (iProver) can also solve this example.

The next example
P (a); P (f(a))→; P (f(f(x)))→ P (x); P (x)→ P (f(f(x)))

is already saturated under superposition. For FO-AR, the clause P (x) → P (f(f(x))) is
replaced by S(x)→ P (f(x)) and P (x)→ S(f(x)). Then ordered resolution terminates after
inferring S(a)→ and S(f(x))→ P (x).

The Inst-Gen and model evolution calculi, however, fail. In either, a satisfying model
is represented by a finite set of literals, i.e, a model of the propositional approximation for
Inst-Gen and the trail of literals in case of model evolution. Therefore, there necessarily
exists a literal P (fn(x)) or ¬P (fn(x)) with a maximal n in these models. This contradicts
the actual model where either P (fn(a)) or P (fn(f(a))) is true. However, iProver can solve
this problem using its built-in ordered resolution solver whereas Darwin does not terminate
on this problem.

Lastly consider an example of the form
f(x) ≈ x→; f(f(x)) ≈ x→; . . . ; fn(x) ≈ x→

which is trivially satisfiable, e.g., saturated by superposition, but any model has at least n+1
domain elements. Therefore, adding these clauses to any satisfiable clause set containing f
forces calculi that explicitly consider finite models to consider at least n + 1 elements. The
performance of final model finders [15] typically degrades in the number of different domain
elements to be considered.

Combining each of these examples into one problem is then solvable by neither superpo-

13

sition, Inst-Gen, or model evolution and not practically solvable with increasing n via testing
finite models. For example, we tested

P (x, y)→ P (x, z), P (z, y); P (a, a); P (f(a), y)→;
P (f(f(x)), y)→ P (x, y); P (x, y)→ P (f(f(x)), y);

f(x) ≈ x→; , . . . , fn(x) ≈ x→;
for n = 20 against SPASS, Vampire, iProver, and Darwin for more than one hour each without
success. Only SPASS-AR solved it in less than one second.

For iProver we added an artificial positive equation b ≈ c. For otherwise, iProver throws
away all disequations while preprocessing. This is a satisfiability preserving operation, how-
ever, the afterwards found (finite) models are not models of the above clause set due to the
collapsing of ground terms.

6 Conclusion

The previous section showed FO-AR is superior to superposition, instantiation-based meth-
ods on certain classes of clause sets. Of course, there are also classes of clause sets where
superposition and instantiation-based methods are superior to FO-AR, e.g., for unsatisfiable
clause sets where the structure of the clause set forces FO-AR to enumerate failing ground
instances due to the approximation in a bottom-up way.

Our prototypical implementation SPASS-AR cannot compete with systems such as iProver
or Vampire on the respective CASC categories of the TPTP [17]. This is already due to the
fact that they are all meanwhile portfolio solvers. For example, iProver contains an imple-
mentation of ordered resolution and Vampire an implementation of Inst-Gen. Our results,
Section 5, however, show that these systems may benefit from FO-AR by adding it to their
portfolio.

The DEXPTIME-completeness result for MSLH strongly suggest that both the MSLH
and also our MSL(SDC) fragment have the finite model property. However, we are not aware
of any proof. If MSL(DSC) has the finite model property, the finite model finding approaches
are complete on MSL(SDC). The models generated by FO-AR and superposition are typically
infinite. It remains an open problem, even for fragments enjoying the finite model property,
e.g., the first-order monadic fragment, to design a calculus that combines explicit finite model
finding with a structural representation of infinite models. For classes that have no finite
models this problem seems to become even more difficult. To the best of our knowledge,
SPASS is currently the only prover that can show satisfiability of the clauses R(x, x) →;
R(x, y), R(y, z) → R(x, z); R(x, g(x)) due to an implementation of chaining [2, 16]. Apart
from the superposition calculus, it is unknown to us how the specific inferences for transitivity
can be combined with any of the other discussed calculi, including the abstraction refinement
calculus introduced in this paper.

Finally, there are not many results on calculi that operate with respect to models con-
taining positive equations. Even for fragments that are decidable with equality, such as the
Bernays-Schoenfinkel-Ramsey fragment or the monadic fragment with equality, there seem
currently no convincing suggestions compared to the great amount of techniques for these frag-
ments without equality. Adding positive equations to MSL(SDC) while keeping decidability
is, to the best of our current knowledge, only possible for at most linear, shallow equations
f(x1, . . . , xn) ≈ h(y1, . . . , yn) [8]. However, approximation into such equations from an equa-
tional theory with nested term occurrences typically results in an almost trivial equational

14

theory. So this does not seem to be a very promising research direction.

Acknowledgements: We thank the reviewers as well as Konstantin Korovin and Giles Reger
for a number of important remarks.

References

[1] Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with
selection and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.
Revised version of Max-Planck-Institut für Informatik technical report, MPI-I-91-208,
1991.

[2] Leo Bachmair and Harald Ganzinger. Ordered chaining calculi for first-order theories of
transitive relations. Journal of the ACM, 45(6):1007–1049, 1998.

[3] Jos C. M. Baeten, Jan A. Bergstra, Jan Willem Klop, and W. P. Weijland. Term-rewriting
systems with rule priorities. Theor. Comput. Sci., 67(2&3):283–301, 1989.

[4] Peter Baumgartner, Alexander Fuchs, and Cesare Tinelli. Implementing the model evo-
lution calculus. International Journal on Artificial Intelligence Tools, 15(1):21–52, 2006.

[5] Peter Baumgartner and Cesare Tinelli. The model evolution calculus. In Franz Baader,
editor, Automated Deduction - CADE-19, 19th International Conference on Automated
Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings, volume 2741
of Lecture Notes in Computer Science, pages 350–364. Springer, 2003.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
and M. Tommasi. Tree automata techniques and applications. Available on: http:

//www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

[7] Jean Goubault-Larrecq. Deciding H1 by resolution. Information Processing Letters,
95(3):401 – 408, 2005.

[8] Florent Jacquemard, Christoph Meyer, and Christoph Weidenbach. Unification in ex-
tensions of shallow equational theories. In Tobias Nipkow, editor, Rewriting Techniques
and Applications, 9th International Conference, RTA-98, volume 1379 of LNCS, pages
76–90. Springer, 1998.

[9] Konstantin Korovin. iprover - an instantiation-based theorem prover for first-order logic
(system description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek,
editors, Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney,
Australia, August 12-15, 2008, Proceedings, volume 5195 of Lecture Notes in Computer
Science, pages 292–298. Springer, 2008.

[10] Konstantin Korovin. Inst-Gen - A modular approach to instantiation-based automated
reasoning. In Programming Logics - Essays in Memory of Harald Ganzinger, pages 239–
270, 2013.

[11] Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In
Natasha Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th Inter-
national Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science, pages 1–35. Springer, 2013.

15

[12] Helmut Seidl and Andreas Reuß. Extending H1-Clauses with Disequalities. Information
Processing Letters, 111(20):1007–1013, 2011.

[13] Helmut Seidl and Andreas Reuß. Foundations of Software Science and Computational
Structures: 15th International Conference, FOSSACS 2012, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn,
Estonia, March 24 – April 1, 2012. Proceedings, chapter Extending H1 -Clauses with
Path Disequalities, pages 165–179. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[14] Helmut Seidl and Kumar Neeraj Verma. Cryptographic protocol verification using
tractable classes of horn clauses. In Program Analysis and Compilation, Theory and
Practice, pages 97–119. Springer, Juni 2007. Lecture Notes in Computer Science.

[15] John K. Slaney and Timothy Surendonk. Combining finite model generation with the-
orem proving: Problems and prospects. In Franz Baader and Klaus U. Schulz, editors,
Frontiers of Combining Systems, First International Workshop FroCoS 1996, Munich,
Germany, March 26-29, 1996, Proceedings, volume 3 of Applied Logic Series, pages 141–
155. Kluwer Academic Publishers, 1996.

[16] Martin Suda, Christoph Weidenbach, and Patrick Wischnewski. On the saturation of
yago. In Automated Reasoning, 5th International Joint Conference, IJCAR 2010, volume
6173 of LNAI, pages 441–456, Edinburgh, United Kingdom, 2010. Springer.

[17] G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The FOF and
CNF Parts, v3.5.0. Journal of Automated Reasoning, 43(4):337–362, 2009.

[18] Andreas Teucke and Christoph Weidenbach. First-order logic theorem proving and model
building via approximation and instantiation. In Carsten Lutz and Silvio Ranise, editors,
Frontiers of Combining Systems: 10th International Symposium, FroCoS 2015, Wroclaw,
Poland, September 21-24, 2015, Proceedings, pages 85–100, Cham, 2015. Springer Inter-
national Publishing.

[19] Andreas Teucke and Christoph Weidenbach. Ordered resolution with straight dismatch-
ing constraints. In Pascal Fontaine, Stephan Schulz, and Josef Urban, editors, Pro-
ceedings of the 5th Workshop on Practical Aspects of Automated Reasoning co-located
with International Joint Conference on Automated Reasoning (IJCAR 2016), Coimbra,
Portugal, July 2nd, 2016., volume 1635 of CEUR Workshop Proceedings, pages 95–109.
CEUR-WS.org, 2016.

[20] Andreas Teucke and Christoph Weidenbach. Decidability of the monadic shallow lin-
ear first-order fragment with straight dismatching constraints. http://arxiv.org/abs/
1703.02837, 2017.

[21] Andrei Voronkov. AVATAR: the architecture for first-order theorem provers. In Armin
Biere and Roderick Bloem, editors, Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vi-
enna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer
Science, pages 696–710. Springer, 2014.

16

[22] Christoph Weidenbach. Towards an automatic analysis of security protocols in first-
order logic. In Harald Ganzinger, editor, 16th International Conference on Automated
Deduction, CADE-16, volume 1632 of LNAI, pages 314–328. Springer, 1999.

[23] Christoph Weidenbach, Dilyana Dimova, Arnaud Fietzke, Rohit Kumar, Martin Suda,
and Patrick Wischnewski. SPASS version 3.5. In Renate A. Schmidt, editor, Automated
Deduction - CADE-22, 22nd International Conference on Automated Deduction, Mon-
treal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture Notes in Computer
Science, pages 140–145. Springer, 2009.

17

