330 research outputs found
How fast is the wave function collapse?
Using complex quantum Hamilton-Jacobi formulation, a new kind of non-linear
equations is proposed that have almost classical structure and extend the
Schroedinger equation to describe the collapse of the wave function as a
finite-time process. Experimental bounds on the collapse time are reported (of
order 0.1 ms to 0.1 ps) and its convenient dimensionless measure is introduced.
This parameter helps to identify the areas where sensitive probes of the
possible collapse dynamics can be done. Examples are experiments with
Bose-Einstein condensates, ultracold neutrons or ultrafast optics.Comment: 9 pages; v2: a shorter version to suit the 4 page limit of
Proceedings of International Conference on Mathematical Modelling in Physical
Sciences, 3-7 September 2012, Budapest, Hungary (IC-MSQUARE 2012
Quantum Zeno Effect and Light-Dark Periods for a Single Atom
The quantum Zeno effect (QZE) predicts a slow-down of the time development of
a system under rapidly repeated ideal measurements, and experimentally this was
tested for an ensemble of atoms using short laser pulses for non-selective
state measurements. Here we consider such pulses for selective measurements on
a single system. Each probe pulse will cause a burst of fluorescence or no
fluorescence. If the probe pulses were strictly ideal measurements, the QZE
would predict periods of fluorescence bursts alternating with periods of no
fluorescence (light and dark periods) which would become longer and longer with
increasing frequency of the measurements. The non-ideal character of the
measurements is taken into account by incorporating the laser pulses in the
interaction, and this is used to determine the corrections to the ideal case.
In the limit, when the time between the laser pulses goes to zero, no freezing
occurs but instead we show convergence to the familiar macroscopic light and
dark periods of the continuously driven Dehmelt system. An experiment of this
type should be feasible for a single atom or ion in a trapComment: 16 pages, LaTeX, a4.sty; to appear in J. Phys.
Smoothed Particle Hydrodynamics for Relativistic Heavy Ion Collisions
The method of smoothed particle hydrodynamics (SPH) is developped
appropriately for the study of relativistic heavy ion collision processes. In
order to describe the flow of a high energy but low baryon number density
fluid, the entropy is taken as the SPH base. We formulate the method in terms
of the variational principle. Several examples show that the method is very
promising for the study of hadronic flow in RHIC physics.Comment: 14 pages, 8figure
Designing the ideal model for assessment of wound contamination after gunshot injuries: a comparative experimental study
<p>Abstract</p> <p>Background</p> <p>Modern high-velocity projectiles produce temporary cavities and can thus cause extensive tissue destruction along the bullet path. It is still unclear whether gelatin blocks, which are used as a well-accepted tissue simulant, allow the effects of projectiles to be adequately investigated and how these effects are influenced by caliber size.</p> <p>Method</p> <p>Barium titanate particles were distributed throughout a test chamber for an assessment of wound contamination. We fired .22-caliber Magnum bullets first into gelatin blocks and then into porcine hind limbs placed behind the chamber. Two other types of bullets (.222-caliber bullets and 6.5 Ă 57 mm cartridges) were then shot into porcine hind limbs. Permanent and temporary wound cavities as well as the spatial distribution of barium titanate particles in relation to the bullet path were evaluated radiologically.</p> <p>Results</p> <p>A comparison of the gelatin blocks and hind limbs showed significant differences (<it>p </it>< 0.05) in the mean results for all parameters. There were significant differences between the bullets of different calibers in the depth to which barium titanate particles penetrated the porcine hind limbs. Almost no particles, however, were found at a penetration depth of 10 cm or more. By contrast, gas cavities were detected along the entire bullet path.</p> <p>Conclusion</p> <p>Gelatin is only of limited value for evaluating the path of high-velocity projectiles and the contamination of wounds by exogenous particles. There is a direct relationship between the presence of gas cavities in the tissue along the bullet path and caliber size. These cavities, however, are only mildly contaminated by exogenous particles.</p
Interacting Electrons on a Fluctuating String
We consider the problem of interacting electrons constrained to move on a
fluctuating one-dimensional string. An effective low-energy theory for the
electrons is derived by integrating out the string degrees of freedom to lowest
order in the inverse of the string tension and mass density, which are assumed
to be large. We obtain expressions for the tunneling density of states, the
spectral function and the optical conductivity of the system. Possible
connections with the phenomenology of the cuprate high temperature
superconductors are discussed.Comment: 14 pages, 1 figur
Resolved Photon Processes
We review the present level of knowledge of the hadronic structure of the
photon, as revealed in interactions involving quarks and gluons ``in" the
photon. The concept of photon structure functions is introduced in the
description of deep--inelastic scattering, and existing
parametrizations of the parton densities in the photon are reviewed. We then
turn to hard \gamp\ and \gaga\ collisions, where we treat the production of
jets, heavy quarks, hard (direct) photons, \jpsi\ mesons, and lepton pairs. We
also comment on issues that go beyond perturbation theory, including recent
attempts at a comprehensive description of both hard and soft \gamp\ and \gaga\
interactions. We conclude with a list of open problems.Comment: LaTeX with equation.sty, 85 pages, 29 figures (not included). A
complete PS file of the paper, including figures, can be obtained via
anonymous ftp from
ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-898.ps.
Protein crystals in adenovirus type 5-infected cells: requirements for intranuclear crystallogenesis, structural and functional analysis
Intranuclear crystalline inclusions have been observed in the nucleus of epithelial cells infected with Adenovirus serotype 5 (Ad5) at late steps of the virus life cycle. Using immuno-electron microscopy and confocal microscopy of cells infected with various Ad5 recombinants modified in their penton base or fiber domains, we found that these inclusions represented crystals of penton capsomers, the heteromeric capsid protein formed of penton base and fiber subunits. The occurrence of protein crystals within the nucleus of infected cells required the integrity of the fiber knob and part of the shaft domain. In the knob domain, the region overlapping residues 489â492 in the FG loop was found to be essential for crystal formation. In the shaft, a large deletion of repeats 4 to 16 had no detrimental effect on crystal inclusions, whereas deletion of repeats 8 to 21 abolished crystal formation without altering the level of fiber protein expression. This suggested a crucial role of the five penultimate repeats in the crystallisation process. Chimeric pentons made of Ad5 penton base and fiber domains from different serotypes were analyzed with respect to crystal formation. No crystal was found when fiber consisted of shaft (S) from Ad5 and knob (K) from Ad3 (heterotypic S5-K3 fiber), but occurred with homotypic S3K3 fiber. However, less regular crystals were observed with homotypic S35-K35 fiber. TB5, a monoclonal antibody directed against the Ad5 fiber knob was found by immunofluorescence microscopy to react with high efficiency with the intranuclear protein crystals in situ. Data obtained with Ad fiber mutants indicated that the absence of crystalline inclusions correlated with a lower infectivity and/or lower yields of virus progeny, suggesting that the protein crystals might be involved in virion assembly. Thus, we propose that TB5 staining of Ad-infected 293 cells can be used as a prognostic assay for the viability and productivity of fiber-modified Ad5 vectors
IP Modularity: Profiting from Innovation by Aligning Product Architecture with Intellectual Property
Towards Customary Legal Empowerment
Rule of Law and Development: Formation, Implementation and Improvement of Law and Governance in Developing Countrie
- âŠ