518 research outputs found

    Spontaneous regression of a cystic cavum septum pellucidum

    Get PDF
    ManuscriptA persistent cavum septum pellucidum (CSP) is present in ~0.73% of adults, although its incidence ranges from 0.14 to 18.9% depending on the detection method. Cystic CSP is even rarer. A cyst causing mass within the CSP can obstruct the intraventricular foramen, leading to blockage of CSF flow and possible hydrocephalus, often justifying surgical intervention. We describe spontaneous decompression of a cystic CSP in a 36-year-old man. Initial MRI showed a cystic CSP with lateral bowing of the septal walls to 1.9 cm. Follow-up MRI 15 months later demonstrated no lateral bowing, and the septal wall width was 1.0 cm. This spontaneous decompression was not explained by the one previously described case report of cystic CSP regression

    The Effect of Sensory Blind Zones on Milling Behavior in a Dynamic Self-Propelled Particle Model

    Full text link
    Emergent pattern formation in self-propelled particle (SPP) systems is extensively studied because it addresses a range of swarming phenomena which occur without leadership. Here we present a dynamic SPP model in which a sensory blind zone is introduced into each particle's zone of interaction. Using numerical simulations we discovered that the degradation of milling patterns with increasing blind zone ranges undergoes two distinct transitions, including a new, spatially nonhomogeneous transition that involves cessation of particles' motion caused by broken symmetries in their interaction fields. Our results also show the necessity of nearly complete panoramic sensory ability for milling behavior to emerge in dynamic SPP models, suggesting a possible relationship between collective behavior and sensory systems of biological organisms.Comment: 12 pages, 4 figure

    Complexity, Development, and Evolution in Morphogenetic Collective Systems

    Full text link
    Many living and non-living complex systems can be modeled and understood as collective systems made of heterogeneous components that self-organize and generate nontrivial morphological structures and behaviors. This chapter presents a brief overview of our recent effort that investigated various aspects of such morphogenetic collective systems. We first propose a theoretical classification scheme that distinguishes four complexity levels of morphogenetic collective systems based on the nature of their components and interactions. We conducted a series of computational experiments using a self-propelled particle swarm model to investigate the effects of (1) heterogeneity of components, (2) differentiation/re-differentiation of components, and (3) local information sharing among components, on the self-organization of a collective system. Results showed that (a) heterogeneity of components had a strong impact on the system's structure and behavior, (b) dynamic differentiation/re-differentiation of components and local information sharing helped the system maintain spatially adjacent, coherent organization, (c) dynamic differentiation/re-differentiation contributed to the development of more diverse structures and behaviors, and (d) stochastic re-differentiation of components naturally realized a self-repair capability of self-organizing morphologies. We also explored evolutionary methods to design novel self-organizing patterns, using interactive evolutionary computation and spontaneous evolution within an artificial ecosystem. These self-organizing patterns were found to be remarkably robust against dimensional changes from 2D to 3D, although evolution worked efficiently only in 2D settings.Comment: 13 pages, 8 figures, 1 table; submitted to "Evolution, Development, and Complexity: Multiscale Models in Complex Adaptive Systems" (Springer Proceedings in Complexity Series

    Social network dynamics of face-to-face interactions

    Full text link
    The recent availability of data describing social networks is changing our understanding of the "microscopic structure" of a social tie. A social tie indeed is an aggregated outcome of many social interactions such as face-to-face conversations or phone-calls. Analysis of data on face-to-face interactions shows that such events, as many other human activities, are bursty, with very heterogeneous durations. In this paper we present a model for social interactions at short time scales, aimed at describing contexts such as conference venues in which individuals interact in small groups. We present a detailed anayltical and numerical study of the model's dynamical properties, and show that it reproduces important features of empirical data. The model allows for many generalizations toward an increasingly realistic description of social interactions. In particular in this paper we investigate the case where the agents have intrinsic heterogeneities in their social behavior, or where dynamic variations of the local number of individuals are included. Finally we propose this model as a very flexible framework to investigate how dynamical processes unfold in social networks.Comment: 20 pages, 25 figure

    Isolation-by-Distance and Outbreeding Depression Are Sufficient to Drive Parapatric Speciation in the Absence of Environmental Influences

    Get PDF
    A commonly held view in evolutionary biology is that speciation (the emergence of genetically distinct and reproductively incompatible subpopulations) is driven by external environmental constraints, such as localized barriers to dispersal or habitat-based variation in selection pressures. We have developed a spatially explicit model of a biological population to study the emergence of spatial and temporal patterns of genetic diversity in the absence of predetermined subpopulation boundaries. We propose a 2-D cellular automata model showing that an initially homogeneous population might spontaneously subdivide into reproductively incompatible species through sheer isolation-by-distance when the viability of offspring decreases as the genomes of parental gametes become increasingly different. This simple implementation of the Dobzhansky-Muller model provides the basis for assessing the process and completion of speciation, which is deemed to occur when there is complete postzygotic isolation between two subpopulations. The model shows an inherent tendency toward spatial self-organization, as has been the case with other spatially explicit models of evolution. A well-mixed version of the model exhibits a relatively stable and unimodal distribution of genetic differences as has been shown with previous models. A much more interesting pattern of temporal waves, however, emerges when the dispersal of individuals is limited to short distances. Each wave represents a subset of comparisons between members of emergent subpopulations diverging from one another, and a subset of these divergences proceeds to the point of speciation. The long-term persistence of diverging subpopulations is the essence of speciation in biological populations, so the rhythmic diversity waves that we have observed suggest an inherent disposition for a population experiencing isolation-by-distance to generate new species

    Patchiness and Demographic Noise in Three Ecological Examples

    Full text link
    Understanding the causes and effects of spatial aggregation is one of the most fundamental problems in ecology. Aggregation is an emergent phenomenon arising from the interactions between the individuals of the population, able to sense only -at most- local densities of their cohorts. Thus, taking into account the individual-level interactions and fluctuations is essential to reach a correct description of the population. Classic deterministic equations are suitable to describe some aspects of the population, but leave out features related to the stochasticity inherent to the discreteness of the individuals. Stochastic equations for the population do account for these fluctuation-generated effects by means of demographic noise terms but, owing to their complexity, they can be difficult (or, at times, impossible) to deal with. Even when they can be written in a simple form, they are still difficult to numerically integrate due to the presence of the "square-root" intrinsic noise. In this paper, we discuss a simple way to add the effect of demographic stochasticity to three classic, deterministic ecological examples where aggregation plays an important role. We study the resulting equations using a recently-introduced integration scheme especially devised to integrate numerically stochastic equations with demographic noise. Aimed at scrutinizing the ability of these stochastic examples to show aggregation, we find that the three systems not only show patchy configurations, but also undergo a phase transition belonging to the directed percolation universality class.Comment: 20 pages, 5 figures. To appear in J. Stat. Phy

    Geological and Hydrogeological Characterization of Springs in a DSGSD Context (Rodoretto Valley – NW Italian Alps)

    Get PDF
    As continuous groundwater monitoring in the upper sector of Rodoretto Valley (Germanasca Valley, Italian Western Alps) is hampered by logistical problem of data collection during winter and spring months, the only tools currently available to derive hydrogeological information are non-continuous and non-long-term dataset of spring discharge (Q), temperature (T) and electrical conductivity (EC). In order to quantity aquifer groundwater reserve, available Q dataset of a small mountain spring (Spring 1 CB) was investigated by applying the analytical solutions developed by Boussinesq (J Math Pure Appl 10:5–78, 1904) and Maillet (Essais dı’hydraulique souterraine et fluviale, vol 1. Herman et Cie, Paris, 1905); T and EC datasets were also used to provide qualitative information about the nature of the aquifer that supplies the spring. The outcomes of the elaborations highlighted the limits of applicability of these methods in the presence of a non-continuous Q dataset: both Boussinesq (J Math Pure Appl 10:5–78, 1904) and Maillet (Essais dı’hydraulique souterraine et fluviale, vol 1. Herman et Cie, Paris, 1905) estimated that discharge values as a function of recession time were found to be consistently lower than the available discharge ones and the estimated groundwater volumes stored over time above the spring level turned out to be underestimated. Continuous (hourly value) and long-term Q, EC and T values are, therefore, needful to correctly quantify and to make a proper management of groundwater resources in mountain areas

    Synthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process

    Get PDF
    A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W18O49nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well crystalline. The growth of W18O49nanorods on SiC nanowires is explained on the basis of vapor–solid (VS) mechanism. The reasonably better turn-on field (5.4 V/μm) measured from the field emission measurements suggest that the synthesized nanostructures could be used as potential field emitters
    corecore