225 research outputs found

    Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes.

    Get PDF
    To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLINDEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18-StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies

    The SWI/SNF ATP-Dependent Chromatin Remodeling Complex in Arabidopsis Responds to Environmental Changes in Temperature-Dependent Manner

    Get PDF
    SWI/SNF ATP-dependent chromatin remodeling complexes (CRCs) play important roles in the regulation of transcription, cell cycle, DNA replication, repair, and hormone signaling in eukaryotes. The core of SWI/SNF CRCs composed of a SWI2/SNF2 type ATPase, a SNF5 and two of SWI3 subunits is sufficient for execution of nucleosome remodeling in vitro. The Arabidopsis genome encodes four SWI2/SNF2 ATPases, four SWI3, a single SNF5 and two SWP73 subunits. Genes of the core SWI/SNF components have critical but not fully overlapping roles during plant growth, embryogenesis, and sporophyte development. Here we show that the Arabidopsis swi3c mutant exhibits a phenotypic reversion when grown at lower temperature resulting in partial restoration of its embryo, root development and fertility defects. Our data indicates that the swi3c mutation alters the expression of several genes engaged in low temperature responses. The location of SWI3C-containing SWI/SNF CRCs on the ICE1, MYB15 and CBF1 target genes depends on the temperature conditions, and the swi3c mutation thus also influences the transcription of several cold-responsive (COR) genes. These findings, together with genetic analysis of swi3c/ice1 double mutant and enhanced freezing tolerance of swi3c plants illustrate that SWI/SNF CRCs contribute to fine-tuning of plant growth responses to different temperature regimes

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    BACKGROUND: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. OBJECTIVE: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood. METHODS: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed. RESULTS: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P<5x10-6 ) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7 ), 14q22 (rs7493885 near NIN; P=2.9x10-6 ) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6 ). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings. CONCLUSION AND CLINICAL RELEVANCE: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms. This article is protected by copyright. All rights reserved

    Genome-wide interaction study of early-life smoking exposure on time-to-asthma onset in childhood

    Get PDF
    Background: Asthma, a heterogeneous disease with variable age of onset, results from the interplay between genetic and environmental factors. Early-life tobacco smoke (ELTS) exposure is a major asthma risk factor. Only a few genetic loci have been reported to interact with ELTS exposure in asthma. Objective: Our aim was to identify new loci interacting with ELTS exposure on time-to-asthma onset (TAO) in childhood.Methods: We conducted genome-wide interaction analyses of ELTS exposure on time-to-asthma onset in childhood in five European-ancestry studies (totaling 8,273 subjects) using Cox proportional-hazard model. The results of all five genome-wide analyses were meta-analyzed.Results: The 13q21 locus showed genome-wide significant interaction with ELTS exposure (P=4.3x10-8 for rs7334050 within KLHL1 with consistent results across the five studies). Suggestive interactions (P&lt;5x10-6) were found at three other loci: 20p12 (rs13037508 within MACROD2; P=4.9x10-7), 14q22 (rs7493885 near NIN; P=2.9x10-6) and 2p22 (rs232542 near CYP1B1; P=4.1x10-6). Functional annotations and the literature showed that the lead SNPs at these four loci influence DNA methylation in the blood and are located nearby CpG sites reported to be associated with exposure to tobacco smoke components, which strongly support our findings.Conclusion and Clinical Relevance: We identified novel candidate genes interacting with ELTS exposure on time-to-asthma onset in childhood. These genes have plausible biological relevance related to tobacco smoke exposure. Further epigenetic and functional studies are needed to confirm these findings and to shed light on the underlying mechanisms

    Multi-Tissue Epigenetic analysis Identifies Distinct associations Underlying insulin Resistance and alzheimer\u27s Disease at Cpt1A Locus

    Get PDF
    BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer\u27s disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P \u3c 1.1 × 10 RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10 CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus

    Key Variants via the Alzheimer\u27s Disease Sequencing Project Whole Genome Sequence Data

    Get PDF
    INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer\u27s disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer\u27s Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS

    Identification of Novel and Rare Variants Associated with Handgrip Strength Using Whole Genome Sequence Data from the NHLBI Trans-Omics in Precision Medicine (TOPMed) Program

    Get PDF
    Handgrip strength is a widely used measure of muscle strength and a predictor of a range of morbidities including cardiovascular diseases and all-cause mortality. Previous genome-wide association studies of handgrip strength have focused on common variants primarily in persons of European descent. We aimed to identify rare and ancestry-specific genetic variants associated with handgrip strength by conducting whole-genome sequence association analyses using 13,552 participants from six studies representing diverse population groups from the Trans-Omics in Precision Medicine (TOPMed) Program. By leveraging multiple handgrip strength measures performed in study participants over time, we increased our effective sample size by 7-12%. Single-variant analyses identified ten handgrip strength loci among African-Americans: four rare variants, five low-frequency variants, and one common variant. One significant and four suggestive genes were identified associated with handgrip strength when aggregating rare and functional variants; all associations were ancestry-specific. We additionally leveraged the different ancestries available in the UK Biobank to further explore the ancestry-specific association signals from the single-variant association analyses. In conclusion, our study identified 11 new loci associated with handgrip strength with rare and/or ancestry-specific genetic variations, highlighting the added value of whole-genome sequencing in diverse samples. Several of the associations identified using single-variant or aggregate analyses lie in genes with a function relevant to the brain or muscle or were reported to be associated with muscle or age-related traits. Further studies in samples with sequence data and diverse ancestries are needed to confirm these findings

    Clonal Hematopoiesis is Associated With Protection From Alzheimer\u27s Disease

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is a premalignant expansion of mutated hematopoietic stem cells. As CHIP-associated mutations are known to alter the development and function of myeloid cells, we hypothesized that CHIP may also be associated with the risk of Alzheimer\u27s disease (AD), a disease in which brain-resident myeloid cells are thought to have a major role. To perform association tests between CHIP and AD dementia, we analyzed blood DNA sequencing data from 1,362 individuals with AD and 4,368 individuals without AD. Individuals with CHIP had a lower risk of AD dementia (meta-analysis odds ratio (OR) = 0.64, P = 3.8 × 1
    corecore