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SUMMARY

To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their com-

ponents, an improved recombineering protocol is described for simple and fast site-directed modification of

plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were

inserted into genes and transferred together with flanking genomic sequences of desired size by recombination

into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified

DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-

DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription

factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red

fluorescent protein) tags, and a PIPL (His18-StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs

is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three

known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification

and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their

association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively.

The results document that simple modification of plant gene products with suitable tags by fast-track recombi-

neering is well suited to promote a wide range of protein interaction and proteomics studies.

Keywords: recombineering, site-directed gene modification, fluorescent reporters, affinity purification, TFIIH

protein kinases, DNA replication-dependent HISTONE H3.1, technical advance.

INTRODUCTION

The term recombineering refers to cloning technologies

that employ phage-encoded recombination enzymes, such

as Exo, Beta, and Gam of lambda phage Red system, to

achieve in vivo site-specific integration of foreign DNA

sequences into genes carried by bacterial chromosomes or

plasmids (Thomason et al., 2014). The kRed system medi-

ates recombination between 50 nucleotide arms of a PCR-

amplified DNA fragment and corresponding homologous

sequences flanking the target site, which may be repre-

sented by a single nucleotide, a codon triplet, or a longer

DNA sequence for generating point mutations, codon

exchanges, deletions, and in-frame insertions of suitable

tags, respectively. First, a positive-negative selectable mar-

ker cassette is inserted into the target gene, and then this

cassette is replaced by a desired tag, or with a DNA frag-

ment carrying a nucleotide exchange or deletion. The

phage genes coding for recombination enzymes are either
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harboured by a plasmid or stably integrated into the chro-

mosome of bacterial host for recombineering. In the kRed
E. coli host SW102 (Warming et al., 2005), the exo, beta,

and gam genes of a defective prophage are expressed by

the pL promoter, which is induced by temporal inactivation

of thermosensitive cI857ts repressor. One of the most pop-

ular positive�negative selectable markers is the galactoki-

nase (galK) gene, the integration of which into the target

site is selected for on minimal medium in a galK� host.

Subsequently, the exchange of galK marker with desired

sequences is achieved by counter-selection on deoxygalac-

tose-containing medium.

Bacterial artificial chromosome (BAC) clones generated

during the genome-sequencing projects carry 100 kb or

larger genomic DNA segments with multiple genes and

can be readily recombined into chromosomes of trans-

formed mammalian embryonic stem cells. The modifica-

tion of mammalian genes by BACs recombineering

became a routine high-throughput approach for the gener-

ation of knockout and knock-in lines, especially in trans-

genic mice (Sharan et al., 2009; Ciotta et al., 2011;

Narayanan and Chen, 2011). As homologous recombina-

tion by BAC DNA transformation did not prove to be feasi-

ble in plants, the application of recombineering was

coupled to Agrobacterium-mediated gene transfer. This

was achieved either by recombineering of plant genes

cloned in TACs (transformation competent BAC Agrobac-

terium vectors, Shibata and Liu, 2000; Zhou et al., 2011;

Alonso and Stepanova, 2015) or by moving the modified

plant genes from BACs into Agrobacterium binary vectors

by gap-repair recombination (Bitri�an et al., 2011). Both

plant BAC-recombineering approaches are, however, rela-

tively slow because direct and counter-selection of the galK

exchange marker on minimal medium requires weeks, and

the first approach is also affected by low frequency of plant

transformation with large chromosomal segments of

TACs.

To improve the efficacy of plant BAC recombineering,

we replaced the galK marker with antibiotic resistance

genes that are either flanked by cleavage sites of the I-SceI

homing endonuclease and therefore excisable, or linked to

an arabinose-inducible ccdB gyrase-inhibitor killer gene as

counterselectable marker. Inhibition of gyrase by ccdB

results in the accumulation of DNA double-stranded

breaks, causing ultimate cell death. To avoid unnecessary

cloning steps, the target plant genes modified by recombi-

neering were moved from the BACs into PCR-amplified

binary vectors by recombination, and then transferred by

Agrobacterium into transgenic plants. The improved

recombineering tools were used for exploring in vivo inter-

actions of Arabidopsis CDKD (CYCLIN-DEPENDENT

KINASE D) homologues of human CDK7 with the CDKD-ac-

tivating kinase CDKF;1, CYCLIN H (CYCH) and core compo-

nents of the RNA polymerase II (RNAPII) general

transcription factor TFIIH. The kinase module (TFIIK) of

human TFIIH is composed of CDK7, CYCH and MAT1

(Menage a trois 1) assembly factor subunits. TFIIK plays a

key role in the activation of cell cycle kinases and, when

bound to TFIIH it phosphorylates serine 5 residues of hep-

tapeptide repeats of RNAPII C-terminal domain promoting

transcription initiation. Furthermore, TFIIK is targeted to

DNA damage sites by TFIIH and modulates both transcrip-

tion-coupled and general genome repair (Fisher, 2012,

2019). Whereas the Arabidopsis CDK7 homologues

CDKD;1, CDKD;2 and CDKD;3 are activated by CDKF;1-me-

diated T-loop phosphorylation and phosphorylate serine 5

residues of RNAPII CTD in vitro (Hajheidari et al., 2012,

2013), their interactions with CYCH and CDKF;1 are not

confirmed in vivo. Compared with yeast and animal MAT1

homologues, which mediate interaction of TFIIK with the

XPB and XPD helicase subunits of TFIIH, the N-terminal

RING domain is missing in the putative Arabidopsis MAT1

(At4 g30820) TFIIK subunit (Umeda et al., 2005). As TFIIH

was not yet purified in association with TFIIK from plants,

it is unknown whether Arabidopsis TFIIK-TFIIH carries con-

served homologues of all TFIIH subunits that were recently

characterized by structural studies of human TFIIH (Greber

et al., 2019). Therefore, we isolated TFIIH complexes from

Arabidopsis using the CDKD;2 and CYCH TFIIK subunits

modified by recombineering and analyzed their subunit

composition by LC-MS/MS mass spectrometry. In these

experiments, we used as nuclear control the DNA replica-

tion-dependent HISTONE H3.1 protein, which is located in

silent regions of the genome and incorporated into chro-

matin during heterochromatin replication (Jacob et al.,

2014; Otero et al., 2016). CDKD and CYCH subunits of the

TFIIH kinase module were labelled by recombineering with

a PIPL (His18-StrepII-HA) epitope, and GFP and mCherry

(green and red fluorescent protein) tags. The CDKD-activat-

ing kinase CDKF;1 was similarly labelled with GFP and PIPL

tags and expressed in the cdkf;1 T-DNA insertion mutant to

validate functionality of modified gene constructs by

genetic complementation. Co-immunoprecipitation and

cellular co-localization data indicated that CYCLIN H

(CYCH) is associated with the Arabidopsis CDKD;1, CDKD;2

and CDKD;3 kinases, but not with their upstream activating

kinase CDKF;1. In contrast, co-immunoprecipitation data

confirmed interaction of CDKF;1 with CDKD kinases. Affin-

ity purification and mass spectrometry analysis of CYCH:

mCherry and CDKD;2:GFP verified their association with

Arabidopsis homologues of conserved core subunits of

TFIIH except XPB. Histone H3.1–mCherry purified as

nuclear control in the same experiments was identified in

complex with three subunits of CAF1 (CHROMATIN

ASSEMBLY FACTOR 1, Tagami et al., 2004; Jiang and Ber-

ger, 2017) and ASF1A/B (ANTI-SILENCING FUNCTION 1,

Lario et al., 2013). In summary, the results documented

that fast-track recombineering is well suited to assist the
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isolation and characterization of components of plant pro-

tein complexes.

RESULTS

Recombineering using ccdB gene cassettes

In recombineering experiments, selectable markers are

inserted into desired positions of genes and then replaced

with DNA fragments that either code for suitable tags or

carry nucleotide exchanges or deletions. Linear DNA frag-

ments of selectable markers and tags used for their

replacement are PCR amplified with primers that carry 50

nucleotides (nt) flanks of targeted gene positions. These

fragments are transformed into E. coli hosts and following

pulse-induction of phage-encoded enzymes are integrated

by recombination aided by the 50-nt flanks into the desig-

nated target sites. The time requirement of recombineering

experiments, which replace traditional cloning with simple

E. coli transformation is primarily determined by the selec-

tion conditions applied. E. coli hosts with heat-inducible

kRed genes need to be cultured at 32°C to avoid constitu-

tive expression of recombination enzymes (Warming et al.,

2005). Transformation of such strains with BACs carrying

the target plant genes is achieved in a day by selecting for

the BAC-encoded antibiotic resistance markers in complete

medium. However, subsequent selection for insertion and

replacement of popular galK marker on minimal medium

requires considerably longer time, hence represents a

major bottleneck of recombineering experiments. To accel-

erate the recombineering procedure, we replaced galK with

new exchange markers by linking chloramphenicol (CmR),

kanamycin (KmR) and spectinomycin (SpR) resistance

genes to a ccdB DNA-gyrase (gyrA) inhibitor suicide gene,

which is transcribed by an arabinose-inducible pBAD pro-

moter and controlled by an adjacent araC repressor gene

(Le Roux et al., 2007; see Experimental Procedures, Sup-

porting Information Figure S1).

For recombineering, BAC DNAs carrying the genes of

TFIIH-associated kinases CDKD;1 (At1g73690 BAC F25P22

KmR), CDKD;2 (At1g66750 BACF4N21 KmR) and CDKD;3

(At1g18040 BAC T10F20, CmR) and their upstream activat-

ing kinase CDKF;1 (At4g28980, BAC F25O24 KmR) were

verified for the presence of target genes by PCR using pri-

mers flanking their stop codons (Figure S2 and Table S1).

The BACs were transformed into E. coli SW102 by select-

ing for their KmR or CmR markers. In the first step of

recombineering (Figure 1), the stop codons of CDKF;1,

CDKD;1 and CDKD;2 genes were replaced by the CmR-ccdB

marker, and that of the CDKD;3 gene with the KmR-ccdB

cassette. DNA fragments of ccdB cassettes were PCR

amplified with primers including 50nt flanks of target gene

stop codons (Figure S2 and Table S1) and transformed

into the BAC-containing host strains. Transformants

selected for the CmR or KmR markers of ccdB cassettes

were subsequently grown without selecting for the BAC-

encoded resistance markers to enhance the loss of empty

BAC copies lacking ccdB insertions, which was monitored

by colony PCR with flanking gene-specific primers.

In the second step, the ccdB cassettes were replaced

with coding sequences of PIPL tag, which is composed of

18 His residues from the Co2+/Ni2+-binding domain of Ara-

bidopsis CobW-like protein (At1g15730) linked to StrepII

and HA (hemagglutinin) epitopes (Figure S3), or with those

of the GFP, or a combination of both. These tags were also

adapted to generation of N-terminal fusions for replacing

translational start codons (Figure S3), and designed to

assist purification of modified plant proteins on Ni2+-agar-

ose, Strep-Tactin, anti-HA affinity, and GFP-Trap resins.

Cells carrying only BACs with ccdB cassette insertions

were transformed with PCR-amplified fragments of the

tags, and then transformants were selected for the BAC-en-

coded resistance marker in the presence of 0.2% arabinose

to induce the suicide ccdB gene. The exchange events

were confirmed by screening for the loss of CmR or KmR

markers of ccdB cassettes and colony PCR with primers

flanking the target sites.

In the third step, the tagged genes and neighbouring

genomic sequences securing their native transcriptional

regulation (i.e. including usually two flanking genes) were

transferred by gap-repair into pGAP binary vectors (Bitri�an

et al., 2011; Table S1, Figures 1 and S2). Two flanks, defin-

ing the boundaries of modified genes were cloned into

pGAP vectors, which were then linearized between the

flanks, dephosphorylated and transformed into SW102

cells carrying the BACs. Gap-repair recombination between

homologous sequences of flanks of linear vectors and

BACs resulted in the integration of modified genes into the

binary vectors. Following selection for ampicillin resistant

(AmpR) transformants, the resulting pGAP clones were fin-

gerprinted by restriction enzyme digestions, and the junc-

tions of inserted tags were confirmed by sequencing using

the flanking gene-specific primers.

Whereas the ccdB cassettes could be similarly inserted

into any position of a target gene and replaced also by

DNA fragments carrying codon exchanges or deletions, the

need for finding transformants with homogeneous BAC

populations carrying only the ccdB insertions delimited the

speed of the first step in the procedure. The requirement

for cloning of homology arms into the binary vectors for

gap-repair recombination in the third step represented

another bottleneck.

Recombineering with I-SceI insertion cassettes

When designing a fast-track version of recombineering, it

was considered that the majority of plant gene modifica-

tions aims at labelling the gene products with N- and C-ter-

minal fusions to fluorescent or affinity tags. Therefore, we

constructed a set of N- and C-terminal insertion cassettes,
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in which the KmR and SpR genes flanked by recognition

sites of the homing endonuclease I-SceI were fused to cod-

ing sequences of GFP, mCherry and GFP–PIPL tags (Fig-

ures 2a and S4). To avoid unnecessary cloning steps, PCR-

amplifiable binary vectors (6.5–6.7 kb, Figure S5) with a

cosmid replicon, bacterial ampicillin (AmpR)/carbenicillin

(CbR) resistance marker, and conditional RK2 conjugational

transfer and replication origins (oriT and oriV) were con-

structed (pGAPBRKm and pGAPBRHyg; Experimental Pro-

cedures). Studies of the T-DNA integration mechanism and

Figure 1. Recombineering with ccdB gene cassettes. The work flow of recombineering with the ccdB exchange cassettes is illustrated in the example of replace-

ment of the stop codon of CDKD;3 (At1g18040) gene by the GFP coding sequences (Figure S2e). The CDKD;3 BAC clone (T10F20) carrying a CmR marker is intro-

duced into the recombineering host E. coli SW102 and the presence of the target gene is verified by PCR amplification with gene-specific primers (green

arrows) flanking its stop codon. In the first step of recombineering (1), the SW102 (BAC T10F20) strain is transformed with the DNA fragment of KmR-araC-ccdB

cassette (2.7 kb), which is PCR amplified with primers carrying 50 nt flanks of the target stop codon (blue and red bars). KmR transformants are selected and

regrown in LB-Km�0.5% glucose medium without selecting for the BAC CmR marker, to enhance the loss of BACs lacking the ccdB insertion. Colonies carrying

only BACs with the ccdB insertion are identified by PCR (2.7 kb + space between the gene-specific primers). In the second step (2), the obtained SW102 (BAC:

ccdB) strain is transformed with a DNA fragment of GFP coding region, which is PCR amplified with primers carrying the 50 nt flanks of the stop codon

(0.82 kb). Transformants are selected and enriched for the BAC CmR marker in LB medium containing 0.2% arabinose to induce the suicide ccdB gene expres-

sion. Exchange of the ccdB marker with the GFP cassette is monitored by colony PCR (0.72 kb + space between the gene-specific primers). In the third step (3),

the modified plant gene is moved by gap-repair into an Agrobacterium binary vector. When using pGAPKm or pGAPHyg (Bitri�an et al., 2011; Figure S2a), two

BAC segments flanking the modified gene (usually located upstream and downstream of neighbouring genes) are PCR amplified as EcoRI-SalI and SalI-BamHI

fragments and inserted into EcoRI�BamHI sites of pGAPs. Subsequently, the vectors are linearized by SalI, phosphatase treated and transformed into SW102

(BAC:GFP). Following selection of AmpR transformants, plasmid DNA is prepared and transformed into E. coli DH5a or DH10B. The presence of modified plant

gene is verified by restriction enzyme fingerprinting and sequencing with the gene-specific primers. The verified clone is transformed to the E. coli donor stain

MFDpir DTIV lacIq and the conjugated into Agrobacterium GV3101 (pMP90RK) for plant transformation. To save time, the gap-repair step (3) is performed with

PCR-amplifiable pGAPBRKm and pGAPBRHyg vectors as shown in Figure 2b. BACs carrying a KmR marker are similarly modified using either the SpR-ccdB or

CmR-ccdB cassette. The latter was used for modification of CDKF;1, CDKD;1 and CDKD;2 genes (Figure S2b–d). The ccdB exchange cassettes can be similarly

inserted into any position of a target gene and replaced with DNA fragments carrying point mutations, codon exchanges or deletions.
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sequencing plant DNA junctions of T-DNA insertions indi-

cated that, compared with the left T-DNA border, the right

border is less prone to deletions as it is protected by a

covalently linked VirD2 protein during T-DNA transfer from

Agrobacterium into plants (Gelvin, 2017). To select for the

integration of full-length T-DNA inserts into plant chromo-

somes, therefore, the plant selectable markers were placed

into the vicinity of T-DNA left border, whereas the site used

for linearization and PCR amplification of vectors, and inte-

gration of tagged plant genes by homologous recombina-

tion was positioned close to the right T-DNA border.

We used the I-SceI insertion cassettes for in-frame

replacement of stop codons of CYCLIN H (CYCH

At5g27620; BACF15A18 KmR) and HISTONE H3;1

(AT5G65360; BAC MNA5 KmR) genes with coding

sequences of GFP and mCherry (Figure S2). In the first step

(Figure 2b), PCR-amplified C–mCherrystop-SpR and C-

GPFstop-SpR cassette fragments (Figure S4 and Table S1)

with corresponding flanks were transformed into E. coli

SW102 carrying the verified BACs, and then transformants

were selected for the SpR marker of I-SceI cassette inser-

tions.

To move the insertion cassette-containing genes into

Agrobacterium vectors in the second step, the pGAPBR

vectors were linearized by BamHI digestion and PCR ampli-

fied with primers that carried 50 nt flanks marking the

Figure 2. Fast-track recombineering using I-SceI insertion cassettes. (a) Schematic presentation of N- and C-terminal KmR and SpR gene-linked I-SceI cassettes

(Figure S4) designed for replacement of start and stop codons of target genes with coding regions of GFP, mCherry and PIPL (His18StrepII-HA) epitope. (b) The

work flow of fast-track recombineering is illustrated schematically by the replacement of stop codons of CYCH and H3.1 genes (Figure S2f,g), which are carried

by BACs with KmR markers. The BAC harbouring the target gene is transformed into the recombineering host SW102 and verified by PCR amplification of a seg-

ment of target gene with primers flanking its stop codon (green arrowheads). In the first step of recombineering (1), the C–GFPstop-SpR I-SceI cassette (Fig-

ure S4) is PCR amplified with primers carrying 50-nt flanks of the stop codon (red and blue bars) and the cassette DNA fragment (2.07 kb) is transformed into

SW102 harbouring the target BAC. Transformants are selected for the SpR marker of the I-SceI cassette and verified by colony PCR with the gene-specific pri-

mers. The PCR will detect BACs both with and without cassette insertions (2.07 kb + space between the primers versus distance between the gene-specific pri-

mers). In the second step (2), the target gene carrying the I-SceI cassette insertion replacing its stop codon is moved by gap-repair into the pGAPBRHyg (or

pGAPBRKm, Figure S5) binary vector. pGAPBRHyg is linearized with BamHI, phosphatase treated (see Experimental Procedures for necessary control step), and

PCR amplified with primers that carry 50 nt flanks of BAC sequences designed for transfer into plants linked to the modified target gene (Figure S2f,g). The puri-

fied linear pGAPBRHyg is transformed into SW102 (BAC:GFPstop-SpR). Following selection of AmpR transformants, plasmid DNA is prepared and transformed

into E. coli DH10B to purify the pGAPBRHyg clones from the resident BACs. In the third step (3), the pGAPBRHyg clone is fingerprinted with restriction enzymes,

cleaved by I-SceI, self-ligated and transformed into E. coli DH10B. AmpR transformants are screened for the loss of SpR marker and subjected to verification by

sequencing the junction of modified plant gene in pGAPBRHyg using the gene-specific primers. Finally, the construct is transferred by conjugation from E. coli

into Agrobacterium for plant transformation as described in Figure 1.

© 2019 The Authors
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boundaries of plant genomic regions of BACs destined for

transfer into plants (Figures S2 and S5). From AmpR SpR

colonies obtained by transformation, plasmid DNA was

isolated and transformed into a regular E. coli host, such

as DH5a or DH10B. The selection for gap-repair of target

plant genes that carried the insertion cassettes with the

SpR marker made it unnecessary to remove the untagged

BACs before performing the gap-repair.

Finally, the SpR selectable marker was removed in the

third step from the modified plant genes by I-SceI diges-

tion and transformation of self-ligated recombinant binary

vectors into E. coli followed by screening for AmpR and

Sp-sensitive colonies. Analogously to the Gateway and

Cre/Lox site-specific recombination techniques, the diges-

tion left an I-SceI footprint of 27 bp after the integrated

GFP and mCherry tags in the modified plant genes. The

resulting recombinant vectors were verified by endonucle-

ase fingerprinting and sequencing. The RK2 oriT function

aided easy conjugation of binary vectors from E. coli into

Agrobacterium GV3101 (pMP90RK, Koncz and Schell,

1986), whereas the RK2 oriV replication origin secured their

maintenance in the latter host, which provided the trans-

acting trfA replication helper function on the disarmed Ti-

plasmid pMP90RK. RK2 conjugation helper functions of

pMP90RK also assisted back-conjugation of the vectors

from Agrobacterium to E. coli, in order to test their integ-

rity before plant transformation. Detailed protocols of

recombineering with the ccdB exchange marker and I-SceI

insertion cassettes are provided in the Experimental Proce-

dures.

Expression and cellular localization of proteins labelled by

recombineering in Arabidopsis

All genes modified by recombineering were transformed

in Agrobacterium binary vectors into wild type Arabidopsis

plants. Although the insert size in the pGAPBR vectors var-

ied from 4.7 kb (HISTONE H3.1 clones) to 14.2 kb (CDKD;2

constructs; Table S1), the transformation efficiencies were

similar to those obtained with the empty pGAP and related

pPCV binary vectors (the transformation frequencies ran-

ged between 0.5% and 1.2% of T1 seed obtained by infiltra-

tion of inflorescences; Koncz et al., 1994; R�ıos et al., 2002).

Transformants showing 3:1 segregation of single T-DNA

insertions were propagated to isolate homozygous T3

lines. CDKF;1 gene constructs carrying the GFP–PIPL, GFP

and PIPL tags were also introduced into the cdkf;1-2/+

(GABI_315A10, Hajheidari et al., 2012) T-DNA insertion

mutant. T2 lines carrying single T-DNA inserts of pGAP

vectors were screened for homozygous status of sulfadi-

azine resistance marker of cdkf;1-2 mutation, and then at

least three independent T3 offspring harbouring the kana-

mycin or hygromycin resistance markers of complement-

ing CDKF;1:GFP–PIPL, CDKF;1:GFP and CDKF;1:PIPL

constructs in homozygous form were identified. Compared

with an extreme dwarf phenotype of cdkf;1-2 mutant, all

selected T3 lines were wild type indicating genetic comple-

mentation of the mutation and verifying full functionality

of tagged CDKF;1 gene constructs (Figure 3a). Western

blotting of equal aliquots of total protein extracts from ran-

domly chosen T3 lines confirmed comparable expression

levels of tagged CDKF;1 kinase proteins in the comple-

mented cdkf;1-2 mutant (Figure 3b). Following microscopic

inspection of GFP and mCherry expression in roots and

hypocotyls of wild type T3 seedlings, the expression of

CDKF;1:GFP–PIPL; CDKD;2:GFP–PIPL, CDKD;3:GFP, CYCH:

GFP, CYCH:mCherrry and Histone H3;1:mCherry proteins

of expected molecular mass was analogously confirmed

by western blotting of total protein extracts with anti-GFP

and anti-RFP antibodies. As expression levels of CDKD;1:

GFP and CDKD;3:GFP proteins were low, their detection

required previous enrichment by affinity purification on

GFP-Trap resin (Figure 3c).

Examination of expression patterns of these fusion pro-

teins in 15-day-old seedlings by confocal microscopy

revealed that CDKF;1, CYCH, CDKDs and the control DNA

replication-dependent histone H3.1 showed the highest

levels in root tip, division and elongation zones, but lower

expression in differentiated cells of lateral roots and hypo-

cotyls. Except for CDKF;1 and CDKD;2, the amounts of

other examined TFIIH components and histone H3.1 were

particularly low in leaves. Compared with CDKD;2, CDKD;1

and CDKD;3 showed low expression in all organs except

primary roots (Figure S6). All examined proteins were also

detected in the regions of sperm and vegetative cells in

pollen grains, various cell types of pistils, and epidermal

cells of immature seeds, in which CDKD;1 levels were the

lowest (Figure S7). Compared with CDKF;1 and CYCH,

CDKDs and histone H3.1 displayed higher level of nuclear

localization in the examined cell types.

To compare subcellular co-localization of CYCH to those

of CDKF;1 and CDKDs, the CYCH:mCherry construct linked

to a plant hygromycin resistance marker was transformed

into lines carrying the CDKF;1:GFP, CDKD;1:GFP and

CDKD;3:GFP genes linked to KmR gene, and crossed with

the CDKD;2–GFP–PIPL line, which harboured a HygR mar-

ker. In hypocotyl cells of subsequently isolated double

homozygous seedlings, subcellular localization of CDKF;1:

GFP and CYCH:mCherry overlapped yielding orange fluo-

rescence in the cytoplasm around the plasma membrane

and nuclei. In contrast, signals of CDKD:GFP fusion pro-

teins showed an overlap with CYCH:mCherry only in cell

nuclei (Figure 4a). These results were corroborated by line

intensity profile analysis of fluorescence signals of GFP-la-

belled CDKF;1, CDKD and CYCH proteins through the medi-

ans of propidium iodine (PI, red) counter-stained single

root cells. High cytoplasmic GFP signals were detected

close to the peaks of PI-stained red cell wall positions in

CDKF;1:GFP expressing cells, and at lower levels in cells
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expressing the CYCH:GFP and CDKD;2:GFP–PIPL proteins,

respectively. In contrast, the GFP signals of CDKD;1 and

CDKD;3 kinases were confined to the area of root cell

nuclei (Figure 4b).

Differential interaction of CDKD kinases with CYCH and

CDKF;1

It is still an open question whether all three Arabidopsis

CDKD kinases are found in similar complexes with CYCH

and function as TFIIH-associated kinases phosphorylating

the RNAPII CTD. According to Shimotohno et al. (2006),

CDKD;1 cannot phosphorylate the RNAP II CTD, and

CDKD;3 shows only very weak interaction with CYCH, sug-

gesting that the main CYCH-associated TFIIH kinase is

CDKD;2. In contrast, Hajheidari et al. (2012) showed that all

three Arabidopsis CDKD kinases were active, phosphory-

late serine 5 residues of RNAP II CTD and their activities

were increased by CYCH binding and CDKF;1-mediated

phosphorylation of their conserved T-loop threonine resi-

dues. To examine in vivo interaction of CYCH with CDKDs

and CDKF;1 in Arabidopsis, protein extracts from seedlings

co-expressing CYCH:mCherry with CDKF;1:GFP–PIPL,
CDKD;1:GFP, CDKD;2:GFP–PIPL and CDKD;3:GFP were

affinity purified on GFP-Trap and subjected to western

blotting with anti-RFP and anti-GFP antibodies. Although

CDKD;1:GFP and CDKD;3:GFP were not detectable in the

input fractions because their levels were much lower in

seedlings compared with CDKD;2 and CDKF;1, the associa-

tion of CYCH:mCherry with all three CDKD kinases was

clearly demonstrated after GFP-Trap purification by

Figure 3. Genetic complementation of cdkf;1 mutation with modified native CDKF;1 gene constructs and confirmation of expression of CDKF;1, CDKD, CYCH

and HISTONE H3.1 proteins labelled by recombineering in transgenic plants. (a) Comparison of phenotypes of cdkf;1 mutant and genetically complemented

mutant lines carrying the CDKF;1:GFP–PIPL, CDKF;1–GFP and CDKF;1:PIPL constructs. Bar, 7 cm. (b) Comparison of expression levels of CDKF;1:GFP–PIPL,
CDKF;1:GFP and CDKF;1:PIPL proteins in the genetically complemented cdkf;1 mutant by western blotting with anti-GFP and anti-HA (PIPL cross-reacting) anti-

bodies. (c) Confirmation of expression of CDKF;1, CDKD, CYCH and H3.1 proteins labelled by GFP/PIPL and mCherry tags using recombineering in wild type

transgenic plants by western blotting with anti-GFP and anti-RFP antibodies. Except for CDKD;1:GFP and CDKD3:GFP, equal aliquots (25 lg) of total protein

extracts from 15-day-old seedlings were used for western blotting. CDKD;1:GFP and CDKD;3:GFP were isolated by affinity purification on GFP-Trap from 20 mg

protein prepared in parallel from seedlings grown under identical conditions.
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Figure 4. Co-localization of CYCH:

mCherry with CDKF;1:GFP, CDKD;1:GFP,

CDKD:2:GFP–PIPL and CDKD;3:GFP in

hypocotyl cells and line intensity profile

analysis of subcellular distribution GFP/

PIPL-labelled CDKF;1, CDKD and CYCH

proteins in propidium iodine-stained roots

cells. (a) Confocal images and overlay of

GFP-labelled CDKF;1 and CDKDs and

mCherry-labelled CYCH in hypocotyl cells

indicate overlapping localization of

CDKF;1 with CYCH in the cytoplasm and

nuclei. In contrast, CDKDs show nuclear

co-localization with CYCH. Bars: 20 lm.

(b) Scanning of green GFP and PI-stained

red cell wall fluorescence through individ-

ual root cells detects CDKF;1:GFP in both

cytoplasm and nuclei. In comparison,

CDKD;2:GFP and CYCH:GFP show lower

accumulation in the cytoplasm, whereas

the CDKD;1:GFP and CDKD;2:GFP–PIPL
signals are confined to nuclei. White

arrows: 10 lm.
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western blotting with anti-RFP antibody (Figure 5a). In con-

trast, CDKF;1: GFP–PIPL failed to pull-down CYCH:mCherry.

To examine the interaction of CDKF;1 with CDKDs, the

CDKF;1:PIPL construct was introduced into CDKD;1:GFP

and CDKD;3:GFP expressing plants to isolate subsequently

double homozygous lines. Protein extracts from these lines

were purified by GFP-Trap and subjected to western blot-

ting with anti-HA antibody detecting the HA epitope of

CDKF;1-fused PIPL tag, as well as with anti-GFP antibody

to monitor the CDKD baits. The results confirmed that both

CDKD;1 and CDKD;3 were associated with their activating

CDKF;1 kinase (Figure 5b).

Identification of CDKD;2:GFP and CYCH:mCherry

associated proteins and interacting partners of HISTONE

H3.1 by mass spectrometry

Expression of modified TFIIH components in transgenic

wild type (wt) and mutant Arabidopsis lines provided suit-

able starting materials for affinity purification of corre-

sponding proteins and their associated factors. CDKD;2–
GFP–PIPL was purified using standardized amounts of pro-

tein extracts from three biological replicates of 4-week-old

rosette plants in parallel with similar samples from

control wild type and YFP�HA (yellow fluorescent

Figure 5. Differential interaction of CDKF;1 with CDKDs and CYCH. (a) CDKD;1:GFP, CDKD;2:GFP–PIPL, and CDKD;3:GFP were affinity purified on GFP-Trap using

20 mg protein extracts prepared from 15-day-old seedlings co-expressing CYCH:mCherry. Western blotting of proteins eluted from the GFP-Trap by anti-RFP

and anti-GFP antibodies indicates that CYCH:mCherry is immunoprecipitated by all three CDKDs, but not by CDKF;1. Compared with CDKD;2:GFP–PIPL, CDKD;1:
GFP and CDKD;3:GFP are expressed at lower levels and therefore were not detected in the input protein (50 lg) fractions. (b) CDKD;1:GFP and CDKD;3:GFP were

affinity purified on GFP-Trap as in (a) from 15-day-old seedlings co-expressing CDKF;1–PIPL. Western blotting of proteins eluted from the GFP-Trap with anti-HA

antibody detecting the HA epitope of PIPL tag indicates association of both CDKD;1:GFP and CDKD:3:GFP with CDKF;1–PIPL. Co-immunoprecipitation of CDKF;1

with CDKD;2 was previously shown by Shimotohno et al. (2004), and is confirmed by identification of CDKF;1 in complex with GFP-Trap purified CDKD;2–GFP–
PIPL by LC-MS/MS mass spectrometry (Table S2).
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protein�hemagglutinin epitope) expressing plants by affin-

ity binding to GFP-Trap. CYCH–mCherry was analogously

isolated on RFP-Trap using control extracts from wild type

and HISTONE H3.1:mCherry expressing plants. Compar-

ison of common components of CDKD;2–GFP–PIPL and

CYCH–mCherry complexes identified by mass spectrome-

try (Tables S2 and S3) indicated that CDKD;2 and CYCH

were associated with each other, as well as with Arabidop-

sis homologues of MAT1 (cyclin-dependent kinase-activat-

ing kinase assembly factor-related AT4G30820), XPD (50 to
30 helicase XERODERMA PIGMENTOSUM GROUP D,

AT1G03190), and p62 (GTF2H1-2, AT1G55750) TFIIH sub-

units. In addition, different amounts of p52 (GTF2H4/TFB2,

AT4G17020) were pulled down by CDKD;2 and CYCH,

which were also associated with comparably lower

amounts of p44 (GTF2H2/TF2H5/TTDA, AT1G05055) and

p34 (GTF2H3/TFB4, AT1G18340) TFIIH subunits. The small-

est TFIIH subunit p8 was detected only in the CYCH:

mCherry pull-down, while corroborating the co-immuno-

precipitation data the CDKD-activating kinase CDKF;1 was

only found in a complex with CDKD;2–GFP. Intriguingly,

both CDKD;2 and CYCH complexes lacked however the 30

to 50 helicase XPB subunit of TFIIH (Figure 6). These data

confirmed the results of previous mass spectrometry stud-

ies, which identified CDKD;2 in complex with MAT1, CYCH.

XPD, p62 and p52 in Arabidopsis cell suspension (Van

Leene et al., 2010) and extended them by showing that

CYCH can be isolated in association with all known con-

served TFIIH subunits except for XPB (Fan and DuPrez,

2015; Rimel and Taatjes, 2018; Greber et al., 2019).

Simultaneous identification of unique proteins showing

co-purification only with H3.1:mCherry, used as nuclear

control in the analysis of CYCH-associated factors, con-

firmed interaction of HISTONE 3.1 with HISTONE 4

(AT5G59970), as well as with conserved FAS1 (FASCIATA

1, AT1G65470), FAS2 (FASCIATA 2, AT5G64630) and MSI1

(MULTICOPY SUPRESSOR OF IRA1, AT5G58230) subunits

of CAF-1 (CHROMATIN ASSEMBLY FACTOR 1; Serra-Car-

dona and Zhang, 2018) and their interacting ASF1 partners

(ANTI- SILENCING FUNCTION 1A, AT1G66740 and 1B,

AT5G38110; Lario et al., 2013). CAF1 and ASF1 play a piv-

otal role in the deposition of histone H3/4 core during DNA

replication and are involved in the regulation of DNA

repair, recombination, endoreduplication, epigenetic

imprinting, heterochromatin silencing and cell fate deter-

mination (Cheloufi and Hochedlinger, 2017; Jiang and Ber-

ger, 2017). Among other candidates of H3.1-interactors

(Figure 6, Table S3), the PHD finger protein (AT4G23860)

was identified as a homologue of human histone H3-bind-

ing UBR7 E3 ubiquitin ligase, which mediates K120 ubiqui-

tination of histone H2B and acts as breast cancer tumour

suppressor (Kleiner et al., 2018; Adhikary et al., 2019). The

tetratricopeptide repeat protein NASP (AT4G37210) was

identified as a member of conserved H3-binding SHNi-TRP

domain factors that mediate deposition of H3-variants in

yeast and Arabidopsis (Dunleavy et al., 2007; Maksimov

et al., 2016), while the DNA-J chaperones ATJ6 and

AT3G12170 were found to be closely related to the

human nuclear H3-binding factor DNAJC9 (Campos et al.,

2015; Lambert et al., 2015). Finally, Ku70 (AT1G16970)

and Ku80 (AT1G48050) in the list of putative H3.1-interac-

tors represented key factors that bind to DNA ends at

double-stranded breaks and interact with components of

the nonhomologous end-joining (NHEJ) DNA repair path-

way, including the human CAF1 complex (Hoek et al.,

2011). Although these protein interactions remained to be

confirmed by subsequent studies, the results of mass

spectrometry analyses illustrated that fast-track recombi-

neering can be applied as a useful tool to assist in the

isolation and identification of components of plant pro-

tein complexes.

DISCUSSION

Unique advantages of recombineering

Compared with Gateway and Gibson assembly of gene

constructs, recombineering offers the advantage that it cir-

cumvents PCR amplification of target genes and provides

a means for their seamless site-specific modification by

homologous recombination in BACs. As it is difficult to

predict a priori the localization of full-length functional

promoter sequences, larger genomic regions including at

least two genes flanking the target are transferred into an

Agrobacterium binary vector and then to the plant for

maintaining native transcriptional regulation of the stud-

ied plant gene. It is particularly important when, for exam-

ple, a bidirectional promoter region controls expression of

the target and its upstream neighbouring gene (see for

example miR159a and CDKD;1 genes in Figure S2), or

when 30-UTRs of target and downstream neighbouring

gene overlap, suggesting potential generation of natural

antisense natsi-RNAs (as is the case for the CDKD;3 and

AT1G18030 PP2C genes in Figure S2). Replacement of the

galK exchange marker by antibiotic resistance gene-linked

cassettes and the use of PCR-amplifiable Agrobacterium

binary vectors for gap-repair cloning of modified target

genes removed two major bottlenecks from the recombi-

neering procedure reducing its total time requirement to

12–14 days, including three E. coli transformation steps

with PCR-amplified DNA fragments. From the two proto-

cols described, the application of ccdB cassettes (Figures 1

and S1) in combination with PCR-amplifiable pGAPBR

gap-repair vectors (Figure S5) is necessary when internal

nucleotide or codon exchanges are generated in the target

gene. The use of I-SceI insertion cassettes (Figures 2 and

S4) simplifies the replacement of translational start or stop

codons of target genes with coding sequences of desired

tags. N-terminal and C-terminal I-SceI insertion cassettes
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were constructed such that their GFP/PIPL and mCherry

sequences can be replaced with any other desired tag.

As the most laborious step in recombineering is the

preparation of heat-induced electrocompetent cells, its

application is particularly effective when all genes in a

single BAC are simultaneously modified. This approach

could facilitate systematic genome-wide labelling of plant

gene products with desired tags. In the examples

described above, we illustrated that labelling of interact-

ing proteins with GFP and mCherry fluorescent protein

tags provides a simple means for their cellular co-local-

ization during different developmental stages and in vari-

ous cell types. The same fluorescent tags are also

amenable to support more detailed fluorescence reso-

nance energy transfer (FRET) interaction studies (Alber-

tazzi et al., 2009; Liao et al., 2019). In addition, the

availability of immobilized alpaca and llama nanobodies

against GFP and RFP facilitate simple affinity purification

and subsequent mass spectrometry analysis of plant

gene products labelled by these tags using recombineer-

ing. To assist multistep affinity purification of protein

complexes, we also created a combined affinity tag, PIPL,

which is applicable for pre-enrichment of tagged proteins

e.g., on Ni2+-agarose or on anti-HA matrix following elu-

tion by HA-peptide (Farr�as et al., 2001). Fast-track recom-

bineering could particularly accelerate ‘proteomics

walking’ by confirmation of interactions between newly

identified components of protein complexes and identifi-

cation of their novel interacting partners. This application

is illustrated in the model study of CDKF;1 interaction

with CDKDs and CYCH followed by purification of CDKD;2

and CYCH complexes and identification of their common

components.

Interaction of CDKD TFIIH kinases with CDKF;1 and CYCH

Arabidopsis CDKD;1–3 are closely related homologues of

budding yeast Kin28, fission yeast Msc6 and metazoan

CDK7 protein kinases, which together with cyclin H and the

MAT1 (Menage a trois 1) assembly factor form the trimeric

kinase module (TFIIK) of general transcription factor TFIIH

(Rimel and Taatjes, 2018; Kolesnikova et al., 2019). When

unbound of TFIIH, TFIIK plays a pivotal role in cell cycle

control through activation of cell cycle kinases by T-loop

phosphorylation. Cell cycle kinase-activating kinase (CAK)

activity of human CDK7 is mediated by autophosphoryla-

tion and CYCH binding (Martinez et al., 1997; Fisher, 2012,

2019), whereas for binding of Msc2/cyclin H Msc6 requires

its T-loop phosphorylation by the Csk1 CAK-kinase

(CAKAK), which has no CAK activity (Hermand et al., 2001;

Devos et al., 2015). In contrast, budding yeast Kin28 has no

CAK activity (Cismowski et al., 1995) and its activating T-

loop phosphorylation is mediated by the CDC28 cell cycle

kinase-activating kinase Cak1/Cvi1 (Kaldis et al., 1996). Ara-

bidopsis CDKF;1 identified as a suppressor of yeast cak1

and csk1 mutations (Umeda et al., 1998; Shimotohno et al.,

2004) phosphorylates the T-loops of CYCH-dependent

CDKD TFIIH kinases (Hajheidari et al., 2012), but does not

affect the activities of CDKA;1 and CDKB;1/2 cell cycle

kinases (Takatsuka et al., 2009). Based on genetic analysis

of double and triple mutants, Hajheidari et al. (2012) found

that the three Arabidopsis CDKD homologues perform

overlapping functions. In contrast, Shimotohno et al.

(2004) reported that CDKD;1 is an inactive enzyme, which

is not phosphorylated by CDKF;1, and found that CDKD;3

has higher CDKA;1 phosphorylating activity and lower

CYCH-binding capability compared with CDKD;2

CDKD CYCH

MAT1

XPB

p62p52

XPD

CDKF;1

p34

p44
p8

TFIIH subunit homologs Gene CDKD2:GFP CYCH:mCherry H3.1:mCherry
CDKF;1 At4g28980 + – –
CDKD;1 At1g73690 – – –
CDKD;2 At1g66750 +++ +++
CDKD;3 At1g18040 – – –
CYCLIN H At5g27620 +++ +++ –
MAT1 AT4G30820 +++ +++ –
XPB1/ERCC3/RAD25/p89 AT5G41370 – – –
XPB2/ERCC2/RAD3/p80 AT5G41360 – – –
XPD/UVH6 AT1G03190 ++ ++ –
p62/GTF2H1-1 AT3G61420 – – –
p62/GTF2H1-2 AT1G55750 ++ ++ –
p52/GTF2H4/TFB2 AT4G17020 + ++ –
p44/TF2H5/TTDA AT1G05055 + ++ –
p34/GTF2H3/TFB4 AT1G18340 +/– +/– –
p8/GTF2H5/TTD; TFB5-1 AT1G12400 – + –
p8/GTF2H5/TTD; TFB5-2 AT1G62886 – – –

HISTONE H3.1 associated
HISTONE H3.1 AT5G65360 – – +++
UBR7  PHD finger protein AT4G23860 – – +++
HISTONE H4 AT5G59970 – – +++
FAS1 AT1G65470 – – +++
FAS2 AT5G64630 – – ++
MSI1 AT5G58230 – – ++
ASF1A/SGA2/SP7 AT1G66740 – – ++
ASF1B/SGA1 AT5G38110 – – ++
Tetratricopep�de repeat AT4G37210 – – ++
ATJ6 J-domain protein 6 AT5G06910 – – ++
DnaJ-domain chaperone AT3G12170 – – ++
Ku80 AT1G48050 – – +
Ku70 AT1G16970. – – +

(a) (b)
Figure 6. Summary of results of LC-MS/

MS analyses. (a) Schematic presentation

of arrangement of TFIIH subunits based

on cryo-electron microscope study of

TFIIH structure (Greber et al., 2019). Com-

ponents of the kinase module (blue) inter-

act through MAT1 with the XPB and XPD

helicases of human TFIIH core. However,

in Arabidopsis, TFIIH subcomplexes puri-

fied by CDKD;2 and CYCH the XPB subunit

is absent and the representation of p34 is

largely reduced. Compared with XPD and

p62, all remaining TFIIH subunits show

lower abundance in purified CDKD;2 and

CYCH complexes. (b) List of proteins iden-

tified in the purified CDKD;2:GFP, CYCH:

mCherry and HISTONE H3.1:mCherry

complexes. Representation of peptide

peaks of different subunits measured by

LC-MS/MS (Tables S2 and S3) is indicated

schematically (+ signs).
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(Shimotohno et al., 2003, 2006). In addition, Takatsuka

et al. (2009) observed that the lack of T-loop phosphoryla-

tion in the cdkf;1 mutant leads to selective transcriptional

downregulation and degradation of CDKD;2 but does not

affect CDKD;3 levels (Takatsuka et al., 2009). To support

the conclusion that CDKDs perform distinct functions,

Takatsuka et al. (2015) also reported that a cdkd;1/+cdkd;3/

cdkd;3 double mutant segregated progeny with both

female and male gametophytic lethality, and even man-

aged to complement these segregating defects with the

CDKD;3 gene.

Our recurrent analysis of expression patterns of native

CDKD genes labelled by recombineering indicated that

both CDKD;1 and CDKD;3 are expressed at notably lower

levels compared with CDKD;2 in most organs, except roots.

In total protein extracts of seedlings, CDKD;1 and CDKD;3

can only be detected after enrichment on GFP-Trap. All

three CDKDs showed nuclear localization, although the

most abundant CDKD;2 protein is also detectable at a low

level in the cytoplasm. All three CDKDs showed co-im-

munoprecipitation and nuclear co-localization with CYCH.

In comparison, the CDKD-activating CDKF;1 kinase, as well

as CYCH are detectable in both the cytoplasm and the

nucleus, and their cellular localization largely overlaps.

Nonetheless, CDKF;1 did not co-immunoprecipitate with

CYCH, but showed similar association with all three CDKD

kinases. These results are consistent with the observation

that CDKF;1, like yeast Cak1, preferentially binds to and

phosphorylates the T-loops of its cyclin-free substrates,

which then enhances further interaction of activated

kinases with their cyclin partners (Tsakraklides and Solo-

mon, 2002). Although binding to the RING domain of

MAT1 can also mediate complex formation of unphospho-

rylated KIN28 and CDK7 with Ccl1 and CYCH, respectively,

T-loop phosphorylation of Kin28 and CDK7 is necessary for

stabilization of trimeric CAK complexes in budding yeast

and Drosophila (Larochelle et al., 2001; Keogh et al., 2002).

This is probably the case for Arabidopsis CDKD;2 (Takat-

suka et al., 2009), but it remains to be clarified how the

degradation of CDKDs is regulated during the cell cycle

and in different cell types.

TFIIH components isolated by the CDKD;2 and CYCH baits

According to mass spectrometry data, CDKD;2, CYCH and

MAT1 components of TFIIH kinase module have the high-

est abundance in the purified CDKD;2–GFP and CYCH–
mCherry complexes. The fourth most abundant compo-

nent in the CDKD;2–GFP complex is the Arabidopsis homo-

logue of XPD DNA helicase (Table S2), which carries a

redox-sensitive 4Fe4S cluster. Drosophila XPD was identi-

fied to interact with the RING and a-helical domains of

MAT1 in a cytoplasmic complex (Abdulrahman et al., 2013;

Greber et al., 2019), and to inhibit cell division promoting

activity of the CDK7-CYCH-MAT1 TFIIH kinase module

(Chen et al., 2003; Li et al., 2010). This interaction is dis-

rupted by components of the cytosolic MMXD iron�sulfur

assembly complex that recruit XPD from CAK to mitotic

spindles regulating chromosome segregation (Ito et al.,

2010; Houten et al., 2016; Nag et al., 2018). It is still an

open question whether homologues of iron�sulfur assem-

bly factors (Yuan et al., 2010; Han et al., 2015) would anal-

ogously regulate CAK activity of CDKD�CYCH�MAT1

complexes in Arabidopsis. Although synthesized and partly

assembled in the cytoplasm, the kinase module and

remaining core components of Drosophila TFIIH form a

common complex only in the nucleus (Aguilar-Fuentes

et al., 2006). When targeted to the RNAPII pre-initiation

complex (PIC) by TFIIH in the nucleus, the kinase module

mediates phosphorylation of Ser5 and Ser7 residues of

RNAPII CTD stimulating transcription initiation. The kinase

module is also directed by TFIIH to DNA damage sites.

During transcription-coupled and general genome repair,

the XPD-inhibitor kinase module is evicted from the TFIIH

complex by the repair factor XPA (Coin et al., 2008; Compe

and Egly, 2016).

Although we did not detect CDKF;1 in the complex with

CYCH–mCherry, Hajheidari et al. (2012) demonstrated that

CDKF;1 is required for in vivo phosphorylation of RNAPII

CTD Ser7 residues, as well as for maintenance of CDKD-de-

pendent Ser5 CTD phosphorylation. CDKF;1 is co-immuno-

precipitated with CDKDs but not with CYCH. It is therefore

possible that either targeting the C-terminus of CYCH for

pull-down or CYCH binding to CDKDs disrupts or weakens,

respectively, the interaction of CDKF;1 with the CDKD

kinase module of TFIIH. In budding yeast, Cak1 is not part

of the TFIIH (Kaldis et al., 1996) but nonetheless remains

associated with RNAPII and mediates T-loop phosphoryla-

tion and activation of Kin28, Bur1 and Ctk1 RNAPII CTD

kinases (Espinoza et al., 1998; Kimmelman et al., 1999; Yao

and Prelich, 2002; Ostapenko and Solomon, 2005). During

PIC formation, TFIIH mediates ATP hydrolysis-dependent

opening of promoter region around the transcription start

site (TSS) (Rimel and Taatjes, 2018; Kolesnikova et al.,

2019). In the horseshoe-like structure of TFIIH (Figure 6),

which is recruited by the Mediator to PIC, the terminal XPB

and XPD DNA helicases interact with each other and the

MAT1 subunit of kinase module (Greber et al., 2019). Inter-

action of XPD with p62 and p44 forms one arm of the

horseshoe structure whereas, in the other arm, XPB is

bound to the p52, p8 and p34 TFIIH subunits. The central

p44 and p34 subunits play a major role in stabilization of

the complex by multiple interactions with the p62, p54 and

p8 subunits (Greber et al., 2019). In the TFIIH holocomplex,

MAT1 interacts with XPD and its activator p44, and inhibits

the helicase activity of XPD (Sandrock and Egly, 2001).

Upon entry into the PIC, the interaction of XPB with XPD is

interrupted by TFIIE-binding to XPB, which abolishes its

contact with MAT1 and positions of the XPB-p52-p8
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helicase module towards opening the promoter DNA. At

the same time, the kinase module is displaced between the

hook and shoulder positions of the Mediator close to the

RNAPII CTD domain (Schilbach et al., 2017). This prevents

inhibition of CDK7 kinase through phosphorylation of its

CYCH subunit by the Mediator-associated cyclin C-depen-

dent CDK8 kinase (Akoulitchev et al., 2000).

Comparison of representation of TFIIH subunits isolated

by the help of CDKD;2–GFP and CYCH–mCherry baits

(Tables S2 and S3) indicates a tight association of kinase

module with XPD and its immediate binding partner p62,

which mediates TFIIH interactions with numerous tran-

scription factors and the XPC sensor of DNA lesions

(Okuda et al., 2016). The representation of TFIIH stabilizing

p44, and especially p34 subunit is surprisingly lower, simi-

larly to their p52 and p8 interacting partners. The low

abundance of latter TFIIH subunits might reflect their prox-

imity order compared with the CDKD;2 and CYCH baits

used for purification. However, the complete absence of

XPB from both CDKD;2 and CYCH complexes contradicts

this argumentation, as XPB is an immediate binding part-

ner of MAT1 and XPD. From the two Arabidopsis XPB

homologues, XPB2 is known to complement the yeast

rad25 DNA repair deficiency (Morgante et al., 2005). How-

ever, participation of XPBs in transcription-committed

TFIIH complexes is not yet confirmed experimentally.

Although ATP-dependent helicase activity of XPB is essen-

tial for transcription, recently Alekseev et al. (2017) demon-

strated that chemical inhibition and induced degradation

of XPB does not prevent RNAPII transcription, whereas

XPB functions as transcription inhibitor in the absence of

ATP. Further labelling of other TFIIH subunits, including

XPBs by recombineering should be helpful to determine

whether displacement of the XPB-p52-p8 arm from the

kinase module can be prevented by modification of TFIIH

isolation conditions. Combination of this approach with

induction of DNA lesions might also be helpful to identify

components of plant TFIIH-associated DNA repair factors.

EXPERIMENTAL PROCEDURES

Plant materials, transformation and growth conditions

Wild type (Col-0) and cdkf;1/+ (GABI_315A10, Hajheidari et al.,
2012) Arabidopsis plants were grown in MSAR medium (Koncz
et al., 1994) in a controlled culture room at 22°C with
120 mol m�2 sec�1 light intensity and a photoperiod of 8 h light
and 16 h darkness. Seedlings from in vitro cultures were trans-
ferred into soil and grown under standard greenhouse conditions
(12 h light/12 h of dark period; 22–24°C day temperature and 18°C
night temperature, 200 lEinstein m�2 sec�1 irradiance). For
crosses and Agrobacterium-mediated transformation by vacuum
infiltration (Bechtold et al., 1993), Arabidopsis seedlings planted
into soil were grown under short-day conditions (8 h light/16 h
dark) for 14–16 days and then transferred to long-day conditions
to induce flowering. T1 cdkf;1/+ plants transformed with CDKF;1
gene constructs carrying the GFP–PIPL, GFP and PIPL tags were

self-pollinated and the resulting T2 lines were screened for
homozygous status of the SuR (sulfadiazine resistance) marker of
cdkf;1 mutation. Subsequently, the progeny of derived T3 lines
were screened for homozygous status of the KmR or HygR mark-
ers of complementing CDKF;1 gene constructs. The CYCH–
mCherry (HygR) construct was transformed to homozygous lines
carrying the CDKF;1:GFP, CDKD;1:GFP and CDKD;3:GFP genes
linked to KmR selectable marker to isolate homozygous HygR and
KmR T2 progeny. Homozygous CYCH–mCherry (HygR) and
CDKD;2–GFP–PIPL (HygR) plants were crossed to identify homozy-
gous T2 CYCH–mCherry lines showing 100% mCherry and segre-
gating GFP expression in their roots, and then screened for T3
progeny carrying both markers in homozygous form.

Construction of ccdB exchange and I-SceI insertion

cassettes and PCR-amplifiable binary vectors for

recombineering

To construct ccdB cassettes, first a CmR gene linked to an I-Sce I
site was PCR amplified from plasmid pEL04 (Lee et al., 2001; pri-
mers CmF and CmR-I-SceI, Table S1) and inserted as NaeI frag-
ment into the NcoI site of pGEM-T Easy (Promega). Next, the
araC-pBAD-ccdB cassette was amplified from pSW8197 (Le Roux
et al., 2007; primers SpeI-araC and XbaI-ccdB) and inserted as an
SpeI�SacI fragment into the adjacent XbaI�SacI sites resulting in
pGEM-CmR-araC-ccdB (Figure S1). The CmR gene of the latter
vector was removed by NcoI cleavage and replaced by an ampli-
fied BspHI fragment pACYC177 KmR gene linked to an I-SceI site
(primers KmF and KmR-I-SceI) to yield pGEM-KmR-araC-ccdB. A
SphI�EcoRI fragment of the latter plasmid carrying the KmR gene
was replaced by the SpR gene of pER8 linked to an I-SceI site (Zuo
et al., 2000; primers SpF and SpR-I-SceI) to construct pGEM-SpR-
araC-ccdB (Figure S1).

To assemble the coding region of PIPL tag, the Co2+/Ni2+-bind-
ing domain of Arabidopsis CobW-like protein (At1g15730) carrying
18 His residues was linked to two copies of the StrepII epitope
separated by a Gly-rich linker by annealing partially complemen-
tary primers P1 and P2 (Table S1). After filling in the ends with T4
DNA polymerase, the resulting fragment was extended and PCR
amplified using P1 and a third partially overlapping primer P3,
and cloned into the EcoRV site of pUC57 (Genscript). A GFP–PIPL
cassette for generation of C-terminal fusions was constructed by
simultaneous insertion of the PCR-amplified EcoRI�SalI fragment
of the GFP coding region without the stop codon (primers
GFPc1F/R) and an amplified SalI�SacI fragment of PIPL coding
region (primers PIPLc1F/R) with start and stop codons into EcoR-
I�SacI sites of pBSKII. A PIPL–GFP cassette for generation of N-
terminal fusions was created by insertion an amplified (primers
PIPLc2F/R) EcoRI�SalI fragment of the PIPL coding region without
a stop codon and a SalI�SacI fragment of GFP coding region with
start but with no stop codon into EcoRI�SacI sites of pBSKII (Fig-
ure S3).

DNA fragments amplified from pGAPHyg and pGAPKm (Bitri�an
et al., 2011) with linker primers for joining the adjacent segments
(Table S1) were assembled into the binary vectors pGAPHyg2 and
pGAPKm2 (Figure S5) using a Gibson assembly master mix
(NEB). Upon SalI cleavage, T4 DNA polymerase fill in and EcoRI
digestion, the multicopy pUC9 replicons of the latter vectors were
exchanged for a pHC79 cosmid replicon, which was isolated by
BglII cleavage, fill in and EcoRI digestion from pPCV6NFHyg
(Koncz et al., 1989) to construct the more stable and lower copy
number binary vectors pGAPBRHyg and pGAPBRKm (Figure S5).

To construct the N-terminal KmR–GFP–PIPL I-SceI insertion cas-
sette, the KmR gene amplified (primers BamSceKm5 and Km3Spe;
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Table S1) as the BamHI�I-SceI/SpeI fragment from pGEM-KmR-
araC-ccdB and the GFP–PIPL coding region amplified without a
stop codon as SpeI�I-SceI/KpnI fragment from pBSK–GFP–PIPL
(primers GFPPIPL5SpeSce and GFPPIPL3Kpn) were cloned into
BamHI�KpnI sites of pBSKII yielding pNKmR–GFP–PIPL. The
SpeI�KpnI GFP–PIPL fragment of the latter vector was replaced
with the mCherry coding region amplified without stop codon as
SpeI�I-SceI/KpnI fragment from pPC-GW–mCherry (Dalal et al.,
2015; primers mCher5SpeISceI and mCher3KpnI) to create the pN-
KmR–mCherry cassette plasmid. The NotI�SpeI fragments of KmR
genes in the GFP–PIPL and mCherry cassettes were replaced by a
NotI�SpeI fragment of the SpR gene amplified from pER8 (pri-
mers NotBamHI-SceSpF and SpectR3) to construct the cassette
plasmids pN-SpR–GFP–PIPL and N-SpR–mCherry. The C-terminal
GFP–PIPL-KmR and GFP-KmR cassettes were assembled by pair-
wise cloning of BamHI/I-SceI�SpeI fragments of GFP–PIPL and
GFP coding regions amplified with stop codons from pBSK–
GFP–PIPL (primers GFPPIPL5Bam, GFPPIPL3stopSceSpe, and
GFP3stopSceSpe) with a SpeI/I-SceI�KpnI fragment of KmR gene
amplified from pGEM-KmR-araC-ccdB (primers Km5Spe and
Km3SceKpnI) into BamHI�KpnI sites of pBSKII. The GFP gene of
GFP-KmR cassette was replaced by a BamHI/I-SceI�SpeI fragment
of mCherry coding region amplified with a stop codon (primers
mCher5BamHI and mCher3StopSceSpe) from pPC-GW–mCherry
yielding the C–mCherry-KmR cassette in pBSKII. Finally, the KmR
gene of C–GFP-KmR and C–mCherry-KmR cassettes was replaced
by a SpeI/I-SceI�KpnI fragment of the SpR gene amplified from
pER8 (primers SpRSpe5 and SpRSceKpnI) to construct the C–GFP-
SpR and C–mCherry-SpR cassettes in pBSKII. Schematic maps of
insertion cassettes and their sequences are depicted, respectively,
in Figure 2a and Figure S4).

Preparatory steps of recombineering

E. coli strains with BAC clones carrying the studied Arabidopsis
genes were obtained from the Arabidopsis Biological Research
Center (ABRC) and maintained by selecting for the BAC-encoded
antibiotic resistance marker, if not stated otherwise. BAC DNA
was isolated by the alkaline lysis procedure (Sambrook and Rus-
sell, 2000) following incubation of cells in buffer I (50 mM Tris–HCl
(pH 8.0), 50 mM glucose, and 20 mM EDTA and 1 mg mL�1 lyso-
zyme) for 30 min at 20°C. After RNase A (250 mg mL�1, 2 h at
37°C) and proteinase K (0.4 mg mL�1 overnight at 37°C) treat-
ments, BAC DNA was subjected to phenol�chloroform extraction
followed by 2-propanol precipitation. Each BAC was verified by
PCR amplification using Taq DNA polymerase (New England Bio-
labs, NEB) with two primers flanking the position of target site
(i.e. stop codons) in the studied plant gene (Table S1 and Fig-
ure S2). Before E. coli transformation by electroporation (Dower
et al., 1988), the BACs and PCR-amplified DNA fragments and bin-
ary vectors were drop-dialyzed on Millipore membrane filters
(MFTM 0.025 lm VSWP) floating on sterile H2O. The recombineer-
ing E. coli host SW102 was always cultured at 32°C. After trans-
forming with a BAC, SW102 was grown by selecting for the BAC-
encoded antibiotic resistance marker in 20 mL LB medium to
OD600 0.4-0.6. For recombineering, 4 mL culture was pelleted by
8000 rpm for 1 min in a tabletop centrifuge, resuspended in 1 mL
LB medium and incubated by shaking at 42°C for 15 min to induce
the expression of kRed genes. After centrifugation, the cells were
resuspended in 1 mL ice-cold sterile H2O and pelleted three times,
then resuspended in 100 ll H2O and electroporated with linear
cassette fragments or pGAPBR vectors (0.2–4 lg in 20 ll H2O) in a
pre-chilled electroporation cuvette (BioBudget, 2 mm) using an
electropulse (at 2.5 kV [i.e., 12.5 kV cm�1 cuvette width], 25 lF,
and 200 Ω) for 4–5 msec in a Bio-Rad Gene Pulser.

Before starting the recombineering experiments, all necessary
plasmid PCR templates were purified by caesium chloride�ethid-
ium bromide gradient centrifugation (Sambrook and Russell,
2000). The KmR/SpR-ccdB cassettes were PCR amplified using
high fidelity Q5 DNA polymerase (NEB) with the corresponding
forward and reverse primers (Table S1 and Figures S1 and S2),
digested by DpnI to cleave the contaminating template plasmid,
and isolated from agarose gels after size separation. Similarly, all
I-SceI insertion cassettes (Figure S4) were excised from the corre-
sponding pBSK cassette vectors as BamHI�KpnI fragments and
gel purified. The pGAPBR binary vectors (Figure S5) were lin-
earized by BamHI. All purified ccdB and I-SceI insertion cassettes
and linear pGAPBR vectors were treated with alkaline phos-
phatase, purified with phenol-chloroform extraction and then ali-
quots from them were self-ligated and electroporated into BAC-
free SW102 to exclude the presence of contaminating cassette-
source vectors and circularized pGAPBR plasmids. The cassette
fragments and BamHI-cleaved pGAPBR vectors were then used as
PCR templates in the recombineering experiments.

Recombineering with the ccdB exchange markers

In the first step of recombineering with the ccdB exchange mark-
ers (Figure 1), the KmR/SpR-ccdB cassettes were PCR amplified
with forward and reverse primers carrying 50-nt flanks of the tar-
get site of plant gene using Q5 DNA polymerase (NEB) and a PCR
program (98°C 30 sec, 36 cycles of 98°C 10 sec, 60°C 30 sec, and
72°C 3 min). After electroporation into heat-induced SW102, the
cells were supplemented in 1 mL LB-0.5% glucose, incubated for
2 h at 32°C, and then plated onto LB agar containing 0.5% glucose
and antibiotics to select for the resistance marker of the ccdB cas-
sette. A transformant was regrown in 25 mL LB�0.5% glucose
medium and plated to single colonies by selecting only for the
resistance marker of the ccdB cassette. Using a primer pair flank-
ing the target site, next colony PCR was performed to screen for
transformants that harboured only BACs with the ccdB cassette
but lost unmodified BACs carrying empty target sites. For colony
PCR, 6–12 transformants were grown at 32°C in LB-0.5% glucose
by selecting for the antibiotics resistance marker of ccdB cassettes
and 1 ll aliquots of these cultures were used as templates in PCR
reactions with Taq polymerase (1 U, NEB) in 20 ll buffer (19 PCR
buffer (NEB), 0.25 mM dNTP, 1 lM gene-specific flanking primers)
and a PCR program (95°C 30 sec, 35 cycles of 95°C 15 sec, 60°C
30 sec and 68°C 2 min followed by 68°C 2 min).

In the second step of recombineering, the ccdB cassette was
replaced with GFP-(PIPL) tags (Figures S2 and S3). The PCR ampli-
fied tag fragments were electroporated into heat-induced SW102
that carried only BACs with the confirmed ccdB cassette. Follow-
ing incubation in 1 mL LB medium for 2 h at 32°C, half of the cells
were plated on LB�0.2% arabinose plates and the other half was
inoculated in 20 mL LB-0.2% arabinose liquid culture and plated
next day by selecting for the antibiotic resistance marker of BAC
in both cases. The loss of antibiotic resistance marker of ccdB cas-
sette was confirmed by replica plating of colonies and subsequent
colony PCR either with primers flanking the target sites or with
tag-specific primers or combinations of both.

The third gap-repair step of recombineering was performed
either as outlined below for the I-SceI insertion cassettes, or using
the pGAP vectors as described (Bitri�an et al., 2011). In the latter
case, two segments of BACs flanking the modified plant genes
were PCR amplified as EcoRI�BamHI and BamHI�SalI fragments
and after digestion with the corresponding enzymes and gel
purification were cloned into EcoRI�SalI sites of the binary vec-
tors. Before the gap-repair step, these vectors were linearized with
SalI, treated with alkaline phosphatase and tested for the absence
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of self-ligation. After transforming the linear pGAP or pGAPBR
vectors into the SW102 host harbouring a BAC with a tag replac-
ing the ccdB markers, the clones in the gap-repair step were
selected for their AmpR marker.

Sequences of pGAP vectors and modified versions of CDKF;1,
CDKD;1, CDKD;2 and CDKD;3 genes cloned by gap-repair between
EcoRI and BamHI sites of pGAPs are depicted in Figure S2, which
indicates the positions of flanks and all primers used for recombi-
neering with the ccdB cassettes. The corresponding PCR primers
are listed in Table S1.

Recombineering with the I-SceI insertion cassettes

In the first step of recombineering purified BamHI�KpnI fragments
(2 ng in 50 ll) of the I-SceI insertion cassettes were PCR amplified
with the corresponding forward and reverse primers carrying 50-
nt flanks of translation start or stop codons of target plant genes
(Figure S4 and Table S1) using Q5 Taq polymerase (NEB) and a
program (98°C 30 sec, 36 cycles of 98°C 10 sec, 71°C 30 sec and
72°C 1 min, followed by 72°C 3 min). After testing an aliquot of
PCR products by electrophoresis, the amplified DNA fragments
were desalted and electroporated into SW102 (BAC) cells. Follow-
ing incubation in 1 mL LB at 32°C for 2 h, the cells were plated on
LB agar by selecting only for the antibiotic resistance marker of
the I-SceI insertion cassette. Two to three transformants were
tested by colony PCR with gene-specific primers flanking the tar-
get site, which detected BACs with the insertion cassettes, as well
as unmodified empty BACs.

In the second step, linearized pGAPBR vectors were PCR ampli-
fied in a 50-ll volume with forward and reverse primers carrying
50-nt flanks (1 lM) marking the boundaries of BAC region, which
was destined to be transferred into plants. The pGAPBR reverse
primer carrying the SpeI site (Figures S2, S5 and Table S1) was
always linked to reverse complement of the flank sequence. The
pGAPBR vectors were amplified using Q5 DNA polymerase with
enhancer-containing NEB buffer and the following program: 98°C
30 sec, 35 cycles of 98°C 10 sec; 60°C 30 sec; 72°C 10 min fol-
lowed by 72°C for 5 min. The amplified pGAPBR vectors were size
separated, gel isolated and transformed into SW102, which was
grown by selecting for the antibiotics marker of the I-SceI cassette
insertion in the BAC. Following incubation of electroporated cells
in 0.5 mL LB at 32°C for 2 h, AmpR KmR or AmpR SpR (ampicillin
100 mg L�1, kanamycin 25 mg L�1, and spectinomycin 50 mg L�1)
transformants were selected on LB medium at 32°C and grown up
for plasmid DNA isolation using a NucleoSpin Plasmid kit
(Macherey-Nagel GmbH, D€uren, Germany). The resulting plasmid
DNA was transformed into E. coli DH5a or DH10B followed by
selecting for AmpR KmR or AmpR SpR colonies. From one to
three transformants plasmid DNA was recurrently isolated and fin-
gerprinted with restriction enzymes to confirm the expected struc-
ture of recombinant pGAPBR carrying the designed plant DNA
region.

In the third step, the pGAPBR plasmid carrying the target plant
gene with the I-SceI insertion cassette was digested with I-SceI
(NEB) to remove the antibiotic resistance gene, and then self-li-
gated and transformed into E. coli DH10B followed by selection
for AmpR transformants and screening for the loss of the antibi-
otic resistance gene of the insertion cassette (i.e., kanamycin or
spectinomycin sensitivity). The junctions of tags placed by recom-
bineering into the plant genes were verified by sequencing of the
pGAPBP clones by gene-specific primer pairs flanking the tags in
the target sites. Sequences of modified CYCLIN H (CYCH) and HIS-
TONE H3;1 genes are depicted by marking the positions of all

primers used for recombineering with the I-SceI cassettes in Fig-
ure S2, and the primers are listed in Table S1.

The verified pGAP clones were then transformed into the RK2
conjugation helper E. coli donor strain MFDpir DTIV lacIq (JKE201,
kindly provided by C. Dehio, Biozentrum, University of Basel) and
conjugated into Agrobacterium recipient GV3101 (pMP90RK) at
28°C for 36 h by placing drops of a 1:1 mix of donor and recipient
onto LB agar plates containing 0.3 mM DAP (2,6-diaminopimelic
acid). A loop of conjugation mix was streaked out on YEB-agar
containing 100 mg L�1 rifampicin (Rif100) and 100 mg L�1 car-
benicillin (Cb100) to isolate GV3101 (pMP90RK) transconjugants
carrying the binary vectors. For testing the integrity of pGAP(BR)
clones in Agrobacterium, the plasmids were back-conjugated into
E. coli. The Agrobacterium donor was grown in LB-Cb100 med-
ium, whereas the E. coli DH5a recipient in LB at 28°C. After mixing
the donor and recipient, drops of the conjugation mix were incu-
bated on an LB agar plate for 36 h at 28°C. A loop from the conju-
gation spots was streaked out onto LB-Cb100 plates to grow up
single E. coli colonies at 37°C, where Agrobacterium growth was
inhibited.

All recombineering tools described in this paper are submitted
to and will be distributed by the Arabidopsis Biological Resource
Center.

Confocal laser-scanning microscopy

The localization of GFP- and mCherry-labelled proteins in fresh tis-
sue samples was captured by a Leica TCS SP8 confocal microscope
(Leica, Bensheim, Germany). GFP was excited with Argon laser at
488 nm and the emitted fluorescence was detected between 493
and 550 nm. mCherry was excited at 561 nm and the emitted fluo-
rescence was detected between 576 and 632 nm. Homozygous
transgenic plants carrying the CDKF;1–GFP–PIPL, CDKD;1–GFP,
CDKD;2–GFP–PIPL, CDKD;3–GFP and CYCH–GFP constructs were
germinated on vertical MSAR agar plates and grown for 10 days in
a controlled culture room. The roots of seedlings were stained for
30 sec with 0. 01% PI (propidium iodide, Sigma-Aldrich) followed
by washing several times with water. GFP and PI fluorescence of
root tips was captured by a Leica TCS SP8 confocal microscope. PI
was excited at 488 and the emitted fluorescence was detected
between 600 and 657 nm. Merging of images was performed using
the Leica LAS X software. Line intensity profiles of selected regions
of interest (ROI) were generated using the Image J2 software (Rue-
den et al., 2017) and the data were exported to Excel.

Immunoblotting and co-immunoprecipitation of GFP- and

mCherry-labelled proteins

Total protein extracts from 14-day-old short-day grown seedlings
were prepared in extraction buffer (50 mM Tris–HCl (pH 7.5), 10%
glycerol, 1 mM EDTA, 150 mM NaCl, 1 mM PMSF and 20 lM Sigma
plant protease inhibitor cocktail). Following measurement of pro-
tein concentrations of tissue extracts (Bradford, 1976), 25 lg ali-
quots of protein samples were subjected to size separation by
SDS-PAGE electrophoresis and electro-transferred onto PVDF
membranes (Merck [Millipore] Darmstadt, Germany). The GFP-
and mCherry-labelled proteins were detected by ChromoTek rat
monoclonal primary 3H9 anti-GFP (dilution 1:1000) and mouse
monoclonal 6G6 anti-RFP (dilution 1:1000) antibodies in TBST buf-
fer (25 mM Tris–HCl [pH7.5], 0.15 M NaCl, 0.05% and 5% milk pow-
der). After washing with TBST, proteins were visualized by
incubation with horseradish peroxidase conjugated goat anti-rab-
bit (1:20 000; Vector PI-1000) and anti-mouse (1:10 000; Thermo
Fisher Scientific GmbH, Dreieich, Germany) secondary antibodies
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followed detection by enhanced chemoluminescence (ECL) and
autoradiography.

For immunoprecipitation, 5 g of 14-day-old seedlings grown in
MSAR medium in Petri dishes under short-day condition were
harvested and ground to a fine power in liquid nitrogen using
10 mL of EBW extraction buffer (50 mM Tris–HCl (pH 7.5), 10%
glycerol, 1 mM EDTA, 150 mM NaCl, 5 mM dithiothreitol (DTT),
20 lM plant protease inhibitor cocktail, 1 mM PMSF). After thawing
on ice, the crude extract was subjected to centrifugation in a Beck-
mann JA20 rotor at 12 000 rpm (17 000 g) for 20 min at 4°C. The
supernatant was moved into a 15-mL Falcon tube and protein con-
centration was measured by Bradford assay (Bradford, 1976).
50 ll GFP-Trap Agarose (ChromoTek GmbH, Planegg-Martinsried,
Germany) were added to aliquots of 20 mg total protein and incu-
bated for 2 h at 4°C in the cold room. Next, the GFP-Trap resin
was pelleted by centrifugation (at 500 rpm, Heraeus centrifuge) at
4°C and washed three times with 10 mL washing buffer (50 mM

Tris–HCl (pH 7.5), 300 mM NaCl) followed each time by centrifuga-
tion under the latter condition. Finally, the GFP-Trap resin was
suspended in 1 mL washing buffer and transferred into 1.5-mL
Eppendorf tubes. The beads were boiled for 5 min in 30 ll 19
Laemmli-buffer (63 mM Tris–HCl (pH 6.8), 10% glycerol, 2% SDS,
0.1% 2-mercaptoethanol, 0.0005% bromophenol blue) and 20 ll
aliquots of supernatant samples were subjected to western blot-
ting as described above.

Isolation of CDKD;2:GFP, CYCH:mCherry and HISTONE

H3.1:mCherry complexes

Protein extracts from 15 g rosette materials of 3-week-old green-
house grown seedlings ground in liquid nitrogen were prepared
using 30 mL of EBW extraction buffer (see above). After centrifu-
gation in a Beckmann JA20 rotor at 12 000 rpm (about 17 000 g)
for 20 min at 4°C, 10 mL supernatants of three equal biological
replicates, each containing 20 mg protein, were incubated for
2 h at 4°C with 50 ll GFP-Trap agarose (ChromoTek) or RFP-
Trap agarose (ChromoTek) resin, which was previously washed
three times with 1.5 mL extraction buffer and added in 100 ll
EBW to the protein extracts in Falcon tubes. Subsequently, the
GFP-Trap or RFP-Trap resins were pelleted (500 rpm, Heraeus
centrifuge) at 4°C and washed three times with 10 mL washing
buffer (50 mM Tris–HCl (pH 7.5), 300 mM NaCl). Finally, the GFP-
Trap beads were suspended in 1 mL washing buffer, transferred
into a 1.5-mL Eppendorf tube, pelleted by centrifugation, and
the bound proteins were eluted by 50 ll 0.1% trifluoroacetic acid
(TFA) followed by immediate neutralization of the solution by
addition of 8 ll 1 M Tris base. The RFP-Trap beads were simi-
larly treated but the bound proteins were directly subjected to
on-bead trypsin digestion prior LC-MS/MS analysis. As controls,
three biological replicates of protein extracts were prepared
from wild type (Col-0) and 35S:StrepII-3xHA-YFP (Lapin et al.,
2019) expressing plants of the same age, harvested and pro-
cessed in parallel with the CDKD;2–GFP-, CYCH–mCherry- and
HISTONE H3.1-expressing plants.

Sample preparation for mass spectrometry and LC-MS/

MS data acquisition

Proteins eluted from GFP-Trap resins were reduced with dithio-
threitol (DTT), alkylated with chloroacetamide (CAA), and digested
with trypsin. Next, the samples were desalted using StageTips
with C18 Empore disc membranes (3M; Rappsilber et al., 2003),
dried in a vacuum evaporator, and dissolved in 2% ACN (acetoni-
trile), 0.1% TFA (trifluoroacetic acid). The RFP-Trap-bound proteins
associated with CYCH:mCherry and HISTONE H3.1:mCherry were

subjected to an on-bead digestion. In brief, dry beads were resus-
pended in 25 ll digestion buffer 1 (50 mM Tris–HCl (pH 7.5), 2 M

urea, 1 mM DTT, 5 lg ll�1 trypsin), incubated for 30 min at 30°C in
a thermomixer with 400 rpm, and then pelleted and the super-
natant was transferred to a fresh tube. Digestion buffer 2 (50 mM

Tris–HCl (pH 7.5), 2 M urea, 5 mM CAA) was added. After mixing
the beads were pelleted and the supernatant was collected and
combined with the previous one. The combined supernatants
were then incubated overnight at 32°C in a thermomixer at
400 rpm and protecting the samples from light. The digestion was
stopped by adding 1 ll TFA followed by desalting the samples
with C18 Empore disc membranes according to the StageTip pro-
tocol (Rappsilber et al., 2003).

Dried peptides were re-dissolved in 10 ll of 2% ACN, 0.1% TFA
and adjusted to a final concentration of 0.1 lg ll�1, or measured
without dilution for the on-bead digested samples. Samples were
analyzed using an EASY-nLC 1200 system (ThermoFisher) coupled
to a Q Exactive Plus mass spectrometer (ThermoFisher). Peptides
were separated on 16-cm frit-less silica emitters (New Objective,
0.75 lm inner diameter), packed in-house with reversed-phase
ReproSil-Pur C18 AQ 1.9 lm resin (Dr. Maisch GmbH, Ammer-
buch-Entringen, Germany). Peptides (0.5 lg) were loaded on the
column and eluted for 115 min using a segmented linear gradient
of 5–95% solvent B (0 min: 5%B; 0–5 min: 5%B; 5–65 min: 20%B;
65–90 min: 35%B; 90–100 min: 55%; 100–105 min: 95%, 105–
115 min: 95%) (solvent A 0% ACN, 0.1% FA; solvent B 80% ACN,
0.1%FA) at a flow rate of 300 nl min�1. Mass spectra were
acquired in data-dependent acquisition mode with a TOP15
method. MS spectra were acquired in the Orbitrap analyzer with a
mass range of 300–1750 m/z at a resolution of 70 000 FWHM and
a target value of 3 9 106 ions. Precursors were selected with an
isolation window of 1.3 m/z. Higher-energy collisional dissociation
(HCD) fragmentation was performed at normalized collision
energy of 25. MS/MS spectra were acquired with a target value of
105 ions at a resolution of 17 500 FWHM, a maximum injection
time (max.) of 55 msec and a fixed first mass of m/z 100. Peptides
with a charge of +1, greater than 6, or with unassigned charge
state were excluded from fragmentation for MS2, dynamic exclu-
sion for 30 sec prevented repeated selection of precursors.

LC-MS/MS data analysis

Raw data were processed using MaxQuant software (version
1.5.7.4, http://www.maxquant.org/, Cox and Mann, 2008) with
label-free quantification (LFQ) and iBAQ enabled (Tyanova et al.,
2016). MS/MS spectra were searched by the Andromeda search
engine against a combined database containing the sequences
from A. thaliana (TAIR10_pep_20101214; ftp://ftp.arabidopsis.org/
home/tair/Proteins/TAIR10_protein_lists/) and sequences of 248
common contaminant proteins and decoy sequences. Trypsin
specificity was required and a maximum of two missed cleavages
allowed. Minimal peptide length was set to seven amino acids.
Carbamidomethylation of cysteine residues was set as fixed, oxi-
dation of methionine and protein N-terminal acetylation as vari-
able modifications. Peptide-spectrum-matches and proteins were
retained if they were below a false discovery rate of 1%. Statistical
analysis of the MaxLFQ values was carried out using Perseus (ver-
sion 1.5.8.5, http://www.maxquant.org/). Quantified proteins were
filtered for reverse hits and hits ‘identified by site’ and MaxLFQ
values were log2 transformed. After grouping samples by condi-
tion only those proteins were retained for the subsequent analysis
that had two valid values in one of the conditions. Two-sample t-
tests were performed with a P-value cutoff of 5%. Alternatively,
quantified proteins were grouped by condition and only those hits
were retained that had three valid values in one of the conditions.
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Missing values were imputed from a normal distribution, using
the default settings in Perseus (1.8 downshift, separately for each
column). Volcano plots were generated in Perseus using an FDR
of 5% and an S0 = 1. The Perseus output was exported and further
processed using Excel. Data from the LC-MS/MS analysis obtained
for the CDKD;2:GFP (Acc. No. 171005), CYCH:mCherry and HIS-
TONE H3.1:mCherry (Acc. No. 190227) samples were deposited in
the PRIDE archive (https://www.ebi.ac.uk/pride/archive/) under the
project accession number PXD013637.

ACCESSION NUMBERS

CDKF;1 (At4g28980), CDKD;1 (At1g73690), CDKD;2

(At1g66750), CDKD;3 (At1g18040), CYCH (At5g27620), MAT1

(AT4G30820), XPB1 (AT5G41370), XPB2 (AT5G41360), XPD

(AT1G03190), p62-1 (AT3G61420), p62-2 (AT1G55750), p52

(AT4G17020), p44 (AT1G05055), p34 (AT1G18340), p8-1

(AT1G12400), p8-2 (AT1G62886), HISTONE H3.1

(AT5G65360), HISTONE H4 (AT5G59970), UBR7 PHD finger

(AT4G23860), FAS1 (AT1G65470), FAS2 (AT5G64630), MSI

(AT5G58230), ASF1A (AT1G66740), ASF1B (AT5G38110),

NASP (AT4G37210), ATJ6 (AT5G06910), DnaJ domain

(AT3G12170), Ku70 (AT1G16970), and Ku80 (AT1G48050).
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