8,792 research outputs found

    Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators

    Full text link
    We present an estimator-based control design procedure for flow control, using reduced-order models of the governing equations, linearized about a possibly unstable steady state. The reduced models are obtained using an approximate balanced truncation method that retains the most controllable and observable modes of the system. The original method is valid only for stable linear systems, and we present an extension to unstable linear systems. The dynamics on the unstable subspace are represented by projecting the original equations onto the global unstable eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed, using approximate balanced truncation, for obtaining a reduced-order model of the dynamics on the stable subspace. The proposed algorithm is used to study feedback control of 2-D flow over a flat plate at a low Reynolds number and at large angles of attack, where the natural flow is vortex shedding, though there also exists an unstable steady state. For control design, we derive reduced-order models valid in the neighborhood of this unstable steady state. The actuation is modeled as a localized body force near the leading edge of the flat plate, and the sensors are two velocity measurements in the near-wake of the plate. A reduced-order Kalman filter is developed based on these models and is shown to accurately reconstruct the flow field from the sensor measurements, and the resulting estimator-based control is shown to stabilize the unstable steady state. For small perturbations of the steady state, the model accurately predicts the response of the full simulation. Furthermore, the resulting controller is even able to suppress the stable periodic vortex shedding, where the nonlinear effects are strong, thus implying a large domain of attraction of the stabilized steady state.Comment: 36 pages, 17 figure

    Vacancy-mediated hydrogen desorption in NaAlH4

    Get PDF
    First-principles calculations based on density functional theory are carried out to understand the mechanisms responsible for hydrogen desorption from Ti-doped sodium-alanate (NaAlH4). While the energy needed to remove a hydrogen atom from NaAlH4 with Ti substituted either at the Na site or at Al site is found to be significantly lower than that from the pristine NaAlH4, the presence of Na vacancies is shown to play an even larger role: It is not only an order of magnitude smaller than that from Ti-doped sodium-alanate, but the removal of hydrogen associated with a Na vacancy is exothermic with respect to formation of H2 molecule. Furthermore, we show that the unusual stabilization of the magic AlH3 cluster in the vacancy containing sodium-alanate is responsible for this diminished value of the hydrogen-removal energy. It is suggested that this role of vacancies can be exploited in the design and synthesis of complex light-metal hydrides suitable for hydrogen storage

    The Impact of Link Suggestions on User Navigation and User Perception

    Get PDF
    The study reported in this paper explores the effects of providing web users with link suggestions that are relevant to their tasks. Results indicate that link suggestions were positively received. Furthermore, users perceived sites with link suggestions as more usable and themselves as less disoriented. The average task execution time was significantly lower than in the control condition and users appeared to navigate in a more structured manner. Unexpectedly, men took more advantage from link suggestions than women

    Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands

    Get PDF
    The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling

    Physisorption of Nucleobases on Graphene

    Get PDF
    We report the results of our first-principles investigation on the interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) with graphene, carried out within the density functional theory framework, with additional calculations utilizing Hartree--Fock plus second-order Moeller-Plesset perturbation theory. The calculated binding energy of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the equilibrium configuration being very similar for all five of them. Our results clearly demonstrate that the nucleobases exhibit significantly different interaction strengths when physisorbed on graphene. The stabilizing factor in the interaction between the base molecule and graphene sheet is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study represents a significant step towards a first-principles understanding of how the base sequence of DNA can affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure

    Key influences in the design and implementation of mental health information systems in Ghana and South Africa

    Get PDF
    Introduction Strengthening of mental health information systems (MHIS) is essential to monitor and evaluate mental health services in low and middle-income countries. While research exists assessing wider health management information systems, there is limited published evidence exploring the design and implementation of MHIS in these settings. This paper aims to identify and assess the key factors affecting the design and implementation of MHIS, as perceived by the key stakeholders in Ghana and South Africa. Methods We report findings from the Mental Health and Poverty Project, a 5-year research programme implemented within four African countries. The MHIS strengthening in South Africa and Ghana included two related components: intervention and research. The intervention component aimed to strengthen MHIS in the two countries, and the research component aimed to document interventions in each country, including the key influences. Data were collected using semi structured interviews with key stakeholders and reviews of key documents and secondary data from the improved MHIS. We analyzed the qualitative data using a framework approach. Results Key components of the MHIS intervention involved the introduction of a redesigned patient registration form, entry into computers for analysis every 2 months by clinical managerial staff, and utilization of data in hospital management meetings in three psychiatric hospitals in Ghana; and the introduction of a new set of mental health indicators and related forms and tally sheets at primary care clinics and district hospitals in five districts in the KwaZulu-Natal and Northern Cape provinces in South Africa. Overall, the key stakeholders perceived the MHIS strengthening as an effective intervention in both countries with an enhanced set of indicators in South Africa and introduction of a computerized system in Ghana. Discussion Influences on the design and implementation of MHIS interventions in Ghana and South Africa relate to resources, working approaches (including degree of consultations during the design stage and communication during implementation stage) and the low priority of mental health. Although the influencing factors represent similar categories, more influences were identified on MHIS implementation, compared with the design stage. Different influences appear to be related within, and across, the MHIS design and implementation and may reinforce or negate each other thus leading to the multiplier or minimization effects. The wider context, similar to other studies, is important in ensuring the success of such interventions. Conclusion Future MHIS strengthening interventions can consider three policy implications which emerged from our analysis and experience: enhancing consultations during the intervention design, better consideration of implementation challenges during design, and better recognition of relations between different influence
    corecore