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Vacancy-mediated hydrogen desorption in NaAlH4

C. Moysés Araújo,1 S. Li,2 R. Ahuja,1 and P. Jena2

1Department of Physics, University of Uppsala, Box 530, SE-751 21, Uppsala, Sweden
2Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, USA

�Received 21 January 2005; revised manuscript received 19 April 2005; published 3 October 2005�

First-principles calculations based on density functional theory are carried out to understand the mechanisms
responsible for hydrogen desorption from Ti-doped sodium-alanate �NaAlH4�. While the energy needed to
remove a hydrogen atom from NaAlH4 with Ti substituted either at the Na site or at Al site is found to be
significantly lower than that from the pristine NaAlH4, the presence of Na vacancies is shown to play an even
larger role: It is not only an order of magnitude smaller than that from Ti-doped sodium-alanate, but the
removal of hydrogen associated with a Na vacancy is exothermic with respect to formation of H2 molecule.
Furthermore, we show that the unusual stabilization of the magic AlH3 cluster in the vacancy containing
sodium-alanate is responsible for this diminished value of the hydrogen-removal energy. It is suggested that
this role of vacancies can be exploited in the design and synthesis of complex light-metal hydrides suitable for
hydrogen storage.

DOI: 10.1103/PhysRevB.72.165101 PACS number�s�: 71.20.Ps, 68.43.Bc, 61.50.Lt, 81.05.Zx

I. INTRODUCTION

The growing worldwide demand for energy, the limited
supply of fossil fuels, and their adverse effect on the envi-
ronment have made it necessary to search for alternative en-
ergy sources that are renewable, abundant, secure, environ-
mentally friendly, and cost effective.1 One of the alternate
energy resources that are currently being pursued involves
hydrogen.2–7 Although hydrogen is among the most abundant
elements on earth, exhibits the highest heating value per
mass of chemical fuels, and is pollution free as water is the
only by-product during combustion, there are numerous
hurdles to overcome in its production, distribution, storage,
and use in fuel cells. Among these, hydrogen storage is con-
sidered to be the biggest challenge in a new hydrogen
economy8 since the storage medium must meet the require-
ments of high gravimetric ��10 wt % � and volumetric den-
sity, fast kinetics, and favorable thermodynamics. Currently
there are no storage media that meet simultaneously all of
the above requirements.

The current methods for storing hydrogen in gaseous form
under high pressure or in liquid form in cryogenic tanks are
problematic. First, there are concerns with safety and cost in
compressing and liquefying the hydrogen gas. Second, the
energy densities of hydrogen under 10 000 psi �4.4 MJ/L�
and liquid hydrogen at 20 K �8.4 MJ/L� are significantly
smaller than that in gasoline �31.6 MJ/L�. The solid-state
storage of hydrogen offers an alternate choice9 since in cer-
tain intermetallics the density of hydrogen can exceed that of
its liquid state. More importantly, hydrogen absorption and
desorption in these materials can take place under ambient
conditions. Unfortunately, the gravimetric densities of hydro-
gen in these intermetallics seldom exceed 3 wt % �Ref. 9�
and the materials are not suitable for practical applications.

It is easy to see that for a material to store hydrogen at
around 10 wt %, it has to consist of light elements such as
Li, B, N, C, Na, Mg, and Al. However, hydrogen in these
materials is held by strong covalent or ionic bonds. Conse-
quently, the hydrogen desorption temperatures are high and

the kinetics is slow. Ideally hydrogen should be stored in
such a way that it is neither easy �as would be the case if they
are molecularly physisorbed� nor difficult for it to desorb �as
would be the case if hydrogen is held in strong covalent or
ionic bonds� at moderate temperatures. The central challenge
then is to find materials that can store hydrogen like methane
but whose kinetics and thermodynamics mimic that of inter-
metallics.

Recently a great deal of attention has been focused on
complex light-metal hydrides and in particular on sodium-
alanate �NaAlH4�, due to their high hydrogen content.10–25

Here the four hydrogen atoms form a tetrahedron that encap-
sulates an Al atom �much as in methane� and the AlH4 unit is
stabilized by the transfer of one electron from the Na atom.
The four hydrogen atoms are covalently bonded to Al while
the �AlH4�− unit is bonded to Na+ by an ionic bond. Desorp-
tion of hydrogen takes place in the following three steps:

3NaAlH4 → Na3AlH6 + 2Al + 3H2,

Na3AlH6 → 3NaH + Al + 1.5H2,

NaH → Na + 1
2H2.

The first reaction releases 3.7 wt % of hydrogen, while the
second one releases 1.9 wt % relative to the starting material
NaAlH4. The third step requires very high temperature and
thus the hydrogen-storage capacity of sodium alanate is con-
sidered to be 5.6 wt %. The addition of small amount of
TiCl3 to sodium-alanate was found not only to make the
above process reversible, but also to markedly lower the hy-
drogen desorption temperature.10 This discovery has revital-
ized the research into complex light-metal hydrides as poten-
tial hydrogen-storage materials. Moreover, the role of
catalysts has been highlighted.11 In spite of this interest, a
full understanding of where Ti resides and how it helps to
lower the hydrogen-desorption temperature is lacking.

Several experiments12–18 have been carried out to study
the location of Ti in sodium-alanate, but they have yielded
conflicting results. While in some experiments Ti has been
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found to remain on the surface,10,17 in others Ti is found to
occupy the bulk Na site.14,20 Experimental evidence also ex-
ists where Ti combines with Al to form TiAl3 and segregates
to the zone boundary.16 The energetics of these different sce-
narios have not been studied yet.

Theoretical studies of NaAlH4 and Ti-doped NaAlH4
clusters and crystals have been recently carried out using
density functional theory.20,24,25 All calculations show that
NaAlH4 is an insulator, the bonding between Al and H atoms
is covalent, and due to charge transfer from Na to AlH4, Na+

and �AlH4�− bind ionically. However, the site preferred by Ti
has been controversial. Iniguez et al.20 showed that Ti prefers
to occupy the Na site while Lovvik and Opalka20 argue that
the least unfavorable site for Ti is that of Al. This difference
arises due to the reference energies one uses. Iniguez et al.
have chosen this reference to be isolated atoms while Lovvik
and Opalka have used bulk cohesive energies of Ti, Al, and
Na as reference. We have shown that in both cases the bond-
ing of hydrogen to metal atoms is weakened and the energy
necessary to remove a hydrogen atom is consistently lower
than that from pristine sodium alanate irrespective of
whether Ti occupies the Na or the Al site.25 For example, the
energy necessary to remove a hydrogen atom from pure
NaAlH4 is 4.0 eV, while it is only 1.9 eV when Ti occupies
a Na site and 2.5 eV when Ti occupies the Al site. The low-
ering of the hydrogen desorption temperature is attributed to
this reduction in the hydrogen-removal energy.

It should be noted that formation of NaCl has also been
observed during ball milling of NaAlH4 with TiCl3.16 This
could happen through the following reaction:

TiCl3 + 3Na → 3NaCl + Ti.

Thus, for every TiCl3 that combines with Na to form NaCl,
three Na vacancies can be created. Even if the Ti atom is an
occupier of one of these Na-vacant sites, two Na vacancies
will still remain in the sample. The effect of these vacancies
on the hydrogen desorption has not been considered yet.

In this paper we have addressed this issue. We show that
these vacancies can play a dominant role in the hydrogen-
desorption process. In particular, we show that the energy
needed to remove an H atom from sodium-alanate containing
a Na vacancy is only 0.2 eV—a factor of more than 5
smaller than that associated with a Ti substitution. This result
is consistent with recent experiments26 where hydrogen de-
sorption was observed to occur at lower temperatures in ball-
milled samples of sodium-alanate without the presence of
catalysts. Note that during ball milling, point defects such as
vacancies can be introduced. Furthermore, we show that the
unusual stabilization of the magic AlH3 cluster is responsible
for such a small value of the hydrogen-removal energy. In
Sec. II we outline our computational procedure. The results
are discussed in Sec. III and summarized in Sec. IV.

II. COMPUTATIONAL PROCEDURE

Our calculations are carried out within the framework of
density functional theory27 using the PAW method,28 as
implemented in the VASP code.29 PAW potentials with va-
lence states 2p and 3s for Na, 3s and 3p for Al, and 1s for H

were used. We have chosen an energy cutoff of 500 eV. In
order to calculate the cohesive energy of the H2 molecule,
we have used a cubic supercell with large lattice parameter
�chosen to be 21 Å�, which guarantees a small intermolecu-
lar interaction. In this calculation we have used both the
local-density approximation �LDA� and the generalized gra-
dient approximation �GGA�.30 The latter yields a cohesive
energy of −4.57 eV, which agrees better with the experimen-
tal value of −4.75 eV �Ref. 31� than that obtained using the
LDA—namely, −5.07 eV. This result is consistent with some
previous theoretical investigations where the LDA has over-
estimated the cohesive energy of molecules and solids.32,33

Based on this finding, we have chosen the GGA functional
for all other calculations. We should emphasize that it is
important to use the spin polarization formalism in the cal-
culation of the energy of the H atom without which the co-
hesive energy of the H2 molecule is found to be −6.787 eV.
This is in agreement with the value of −6.781 eV, which has
been calculated recently by Ke and Tanaka.34 The electronic
densities of states �DOS� were calculated by means of the
modified tetrahedral method of Blöchl et al.35 and the elec-
tron localization functions �ELF� were calculated according
to Ref. 36.

In order to study the effect of a Na-vacancy formation on
hydrogen desorption, we have first constructed a �2�2�1�
supercell consisting of 96 atoms �Na16Al16H64�. This is
shown in Fig. 1. The optimization of the supercell has been
done �ionic coordinates and c /a ratio� without any symmetry
constraint using the Hellmann-Feynman forces on the atoms
and stresses on the supercell. For sampling the irreducible
wedge of the Brillouin zone we have used the k-point grids
of 3�3�3 for the geometry optimization and 5�5�5 for

FIG. 1. �Color online� The 96-atom supercell geometry of
Na16Al16H64. The yellow, blue, and red color atoms correspond to
Na, Al, and H, respectively. The Na vacancy is marked by Vc, and
the hydrogen removed in the calculation is marked by H.
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the final calculation at the equilibrium volume. In all calcu-
lations, self-consistency was achieved with a tolerance in the
total energy of at least 0.1 meV. The calculated lattice con-
stants a=4.95 Å and c=10.89 Å as well as the Na-Al and
Al-H distances of 3.50 Å and 1.64 Å compare very well
with the corresponding experimental values of 4.98 Å,
11.15 Å, 3.52 Å, and 1.63 Å.37 The Na vacancy is simulated
by using the Na15Al16H64 supercell. In Fig. 1 the Na-vacant
site is denoted as “Vc”. The optimization of all the atomic
coordinates in the Na15Al16H64 supercell was carried out us-
ing the same procedure as discussed above. It should be
pointed out that we are considering here the simple case of a
neutral vacancy, which does not require any charge back-
ground. The energies needed to remove a hydrogen atom
from these supercells were calculated by reoptimizing the
atomic coordinates in the Na16Al16H63 and Na15Al16H63 su-
percells and calculating the respective cohesive energies. The
hydrogen atom removed to form these supercells is identified
as “H” in Fig. 1.

III. RESULTS AND DISCUSSIONS

We first discuss the relaxation of the atomic positions fol-
lowing the removal of a Na atom. In the perfect sodium
alanate crystal the distance between nearest Na and Al is
3.50 Å while that between Al and nearest four hydrogen at-
oms is 1.64 Å. As a Na atom is removed, one would expect
the nearest Al atom to move toward the vacant site and the
Al-H distances to change. This is because the creation of a
Na vacancy will deprive the nearest �AlH4�− unit from the
extra electron that it needs for being stabilized in the tetra-
hedral form. It is known from cluster calculations that the
neutral AlH4 cluster is unstable against dissociation into
AlH2 and H2 molecule.24 To our surprise, we find very little
structural change after relaxation. The distance between the
Na-vacant site and its nearest Al neighbor reduces to 3.47 Å,
and the four hydrogen atoms bound to the Al atom remain at
distances of 1.62 Å, 1.64 Å, 1.64 Å, and 1.65 Å. Thus there
is very little structural relaxation associated with the creation
of a Na vacancy. This could be due to the fact that the atoms
nearest to the Na vacancy in the sodium-alanate crystal are
bounded by other units that are held with strong covalent or
ionic bonds while in a free AlH4 cluster such an environment
does not exist. We will show in the following that the
hydrogen-removal energy is significantly altered as a result
of the Na vacancy even though the lattice does not distort.

We now compare the energy needed to remove a hydro-
gen atom from both the intrinsic crystal and the one contain-
ing a Na vacancy. In order to do that, we first calculate
the cohesive energy of the Na16Al16H64, Na15Al16H64,
Na16Al16H63, and Na15Al16H63 supercells. This energy is de-
fined as the total energy of the system minus the sum of
individual atomic energies. The hydrogen-removal energies
are thus defined as

�E0 = Ecoh�Na16Al16H63� − Ecoh�Na16Al16H64� ,

�EV = Ecoh�Na15Al16H63� − Ecoh�Na15Al16H64� .

The energy needed to remove a hydrogen atom from pristine
NaAlH4 ��E0� is 4.0 eV. This large value is a consequence

of the strong covalent bonds that are holding the H atoms.
The energy needed to remove a hydrogen atom from the
vicinity of a Ti atom substituted at a Na site was found to be
1.9 eV.25 This is due to the change in the electronic structure
caused by Ti substitution as can be seen from both the ELF
and the electronic DOS. It was shown that Ti weakens the
strength of the covalent bond between Al and H, thus reduc-
ing the energy necessary to remove a hydrogen atom. This is
also consistent with the structural changes where the Al-H
bond length in the TiNa15Al16H64 supercell increased from
1.64 Å to 1.70 Å. Furthermore, the energy needed to remove
a hydrogen atom in the vicinity of Ti substituted at Al site is
also smaller than that in the perfect crystal; it was found to
be 2.5 eV. This is due to the metallic bonding between Ti
and H.

The creation of a Na vacancy plays a dramatic role on the
hydrogen-removal energy: It costs only 0.2 eV ��EV� to take
away the hydrogen atom nearest to the Na-vacant site in the
Na15Al16H64 supercell. This is more than a factor of 5
smaller than that when Ti is substituted at the Na site in
sodium-alanate and one order of magnitude smaller than that
in the intrinsic sodium-alanate. Furthermore, dictated by the
fact that hydrogen atoms are desorbed associatively forming
a hydrogen molecule, we have also calculated the energy
difference in the following reaction;

Na15Al16H64 → Na15Al16H63 + �1/2�H2.

It is achieved by adding half of the H2 cohesive energy
�Ecoh�H2�� to �EV. Ecoh�H2� was calculated as described in
Sec. II. The energy difference in the above reaction is thus
found to be −2.1 eV. The negative sign means that the re-
moval of a hydrogen atom from the vicinity of a Na-vacant
site is exothermic with respect to formation of H2 molecule.
However, for this process to occur, one must invest 0.2 eV
for the removal of each hydrogen atom. Thus the process can
only occur at elevated temperatures. This is in agreement
with recent experiments.26

Our task is now to understand the origin of this substantial
reduction in the hydrogen-removal energy following the cre-
ation of a Na vacancy. The initial thinking was that the pres-
ence of a Na vacancy deprives the adjacent AlH4 unit from
the extra electron that it needs for stabilization. However, as
discussed previously, the structure of AlH4 unit adjacent to
the Na vacancy �see Fig. 2�b�� is nearly the same as that in
NaAlH4 �see Fig. 2�a��.

To understand this paradox, we show in Figs. 2�c� and
2�d� the geometries of the AlH3 units following the removal
of a H atom from the Na16Al16H64 and Na15Al16H64 super-
cells, respectively. Note that while the bonding between Al
and H in the AlH3 unit in the Na16Al16H63 supercells remains
nearly tetrahedral, that in the Na15Al16H63 supercell is very
different—namely, it is nearly planar with an Al-H bond
length of 1.61–1.62 Å. We have seen from earlier calcula-
tions on AlHn clusters24 that the geometry of the AlH3 clus-
ter is planar and that the Al-H bond lengths are 1.60 Å. In
addition, AlH3 is a magic cluster �i.e., the most stable among
the AlHn series� since the energy gained in forming AlH3
from AlH2 is 3.56 eV, while that in forming AlH4 from AlH3
is only 1.13 eV.24 It is this unusual stability of the planar
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AlH3 cluster that is primarily responsible for the reduced
hydrogen removal energy from the Na15Al16H64 supercell.
Thus, the role of vacancy manifests in the formation of a
stable AlH3 unit following the H desorption.

This picture can be further established by investigating
the effect of the Na vacancy on the electronic structure of
sodium alanate. It is done through the analysis of the ELF as
well as the DOS. The former has been recognized as a pow-
erful tool to visualize different types of boding in solids and
molecules.36,38,39 According to its definition, the ELF can
assume values in the range 0–1, where 1 corresponds to per-
fect localization and 0.5 to the case of uniform gas. In Fig.
3�a� we display the two-dimensional distribution of ELF on
the �001� plane for the intrinsic crystal. One can observe the
high ELF within the AlH4

− unit, which confirms the ex-
pected covalent boding between H and Al atoms. The very
low value of the ELF between AlH4

− and Na+ reflect its ionic
bonding. The ELF profile changes very little when a Na va-
cancy is created �see Fig. 3�b��. For example, the nature of
bonds between Na, Al, and H remains nearly the same as in
the perfect crystal. Such a result can also be confirmed from
the DOS picture. In Fig. 4, we show the calculated s and p
partial DOS for Na, Al, and H atoms in the Na16Al16H64
supercell. The valence band is split into two regions. The
low-energy region is composed of Al 2s and H 1s states,
whereas the high-energy region is composed mainly by hy-
bridization between Al 2p and H 1s states. This result is
consistent with the directional covalent bond between the
aluminum and hydrogen atoms discussed earlier. The bottom
of the conduction band just above the Fermi energy is pri-
marily composed of the Na p and s antibonding states. This
is consistent with the ionic bonding between Na+ and
�AlH4�− units. The calculated s and p partial DOS for Al and
H atoms belonging to the AlH4 unit nearest to the Na-vacant

site in the Na15Al16H64 supercell are shown in Fig. 5. They
are basically the same as that in the Na16Al16H64 supercell
described above. The valence band is dominated by Al- and
H-hybridized states. This is consistent with the small relax-
ation of the AlH4 cluster adjacent to the Na-vacancy site

FIG. 2. �Color online� The geometries of the AlH4 complexes in
�a� Na16Al16H64 and �b� Na15Al16H64 supercells and those of AlH3

complexes in �c� Na16Al16H63 and �d� Na15Al16H63 supercells.

FIG. 3. �Color online� The two-dimensional distribution of elec-
tron localization function �ELF� on �001� plane for both �a�
Na16Al16H64 and �b� Na15Al16H64 supercells.

FIG. 4. Partial density of states of �a� Na, �b� Al, and �c� H atom
in the Na16Al16H64 supercell. The solid and dashed lines denote s
and p states, respectively.
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discussed earlier. So far, electronic structure analyses have
shown that the role of Na vacancies in lowering the
hydrogen-removal energy is not associated with the weaken-
ing of the strength of covalent bonding between Al and H, as
it is for Ti atoms.20,25

It is interesting to compare now the partial DOS of Al and
H atoms in the AlH3 cluster in the Na15Al16H63 supercell
�see Fig. 6� with the correspondent ones presented in Fig.
5—i.e., in the Na15Al16H64 supercell. One can observe the
formation of some new states in the low-energy region
around −6 eV, making the valence band broader than that
composed by Al and H states in the AlH4 unit. It means that
energy is gained in the formation of AlH3 clusters in the
vicinity of a Na-vacant site in the Na15Al16H64 supercell.
This is consistent with the calculations of AlHn �n=1–4�
clusters,24 which show that AlH3 is the most stable cluster in
this series. Such a result supports our conclusion that the
unusual stabilization of the magic AlH3 cluster plays an im-
portant role in lowering the hydrogen-removal energy in
sodium-alanate containing Na vacancies.

IV. CONCLUSIONS

In summary, we have used the density functional theory
and supercell approach to study the electronic structure and
hydrogen-removal energies associated with a Na vacancy in

NaAlH4. The results are compared with those when a Ti
atom occupies either a Na or an Al site. The energy needed to
remove a hydrogen atom from the TiNa15Al16H64
�Na16TiAl15H64� supercell is 1.9 eV �2.5 eV�,25 while that
from the Na16Al16H64 supercell is 4.0 eV. We have found
that the presence of a Na vacancy plays an even larger role in
the hydrogen desorption. The hydrogen-removal energy in
this system �Na15Al16H64� is 0.2 eV, which is an order of
magnitude smaller than that in the perfect crystal. More im-
portantly, this process can be exothermic since the two des-
orbed hydrogen atoms can combine to form a H2 molecule
and contribute nearly 2.3 eV/H atom of energy into the sys-
tem. We have neglected the effect of temperature and, in
particular, the vibration and configuration entropy in our cal-
culations. Recently, Watari et al.40 have calculated the con-
figuration entropy in Pd-hydrogen clusters and found it to be
0.05 eV. This small contribution will not affect our results.
We conclude that the dominant role of Ti in reducing the
hydrogen-desorption temperature may be an indirect one—it
leads to vacancy formation which then reduces the
hydrogen-desorption energy. More importantly, it is shown
that the unusual stabilization of the magic AlH3 cluster, al-
lowed by the presence of a Na vacancy, is responsible for the
lowering of the hydrogen-removal energy. This work sug-
gests that a catalyst suitable to reduce the hydrogen-
desorption temperature may be the one that can easily create
vacancies in the alanates. We hope that this new mechanism
will stimulate further experimental work.
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FIG. 5. Partial density of states of �a� Al and �b� H atom adja-
cent to the Na-vacancy site in the Na15Al16H64 supercell. The solid
and dashed lines denote s and p states, respectively.

FIG. 6. Partial density of states of �a� Al and �b� H atom adja-
cent to the Na-vacancy site in the Na15Al16H63 supercell. The solid
and dashed lines denote s and p states, respectively.

VACANCY-MEDIATED HYDROGEN DESORPTION IN NaAlH4 PHYSICAL REVIEW B 72, 165101 �2005�

165101-5



1 See http://www.sc.doe.gov/bes/Basic_Research_Needs_To_
Assure_A_Secure_Energy_Future_FEB2003.pdf

2 J. S. Rigden, Hydrogen: The Essential Element �Harvard Univer-
sity Press, Cambridge, MA, 2003�, p. 1; W. Grochala and P.
Edwards, Chem. Rev. �Washington, D.C.� 104, 1283 �2004�.

3 J. Alper, Science 299, 1686 �2003�.
4 R. D. Cortright, R. R. Davda, and J. A. Dumesic, Nature

�London� 418, 964 �2002�.
5 P. Chen, Z. Xiang, J. Z. Luo, and K. L. Tan, Nature �London�

420, 302 �2002�.
6 N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O.

Keefe, and M. Yaghi, Science 300, 1127 �2003�.
7 L. Schlappbach and A. Zuttel, Nature �London� 414, 353 �2001�.
8 See the report of DOE Workshop on hydrogen in http://

www.sc.doe.gov/bes/hydrogen.pdf
9 See database http://hydpark.ca.sandia.gov/.

10 B. Bogdanovic and M. Schwickardi, J. Alloys Compd. 253, 1
�1997�.

11 K. J. Gross, G. J. Thomas, and C. M. Jensen, J. Alloys Compd.
330, 683 �2002�.

12 H. W. Brinks, B. C. Hauback, P. Norby, and H. Fjellvag, J. Alloys
Compd. 351, 222 �2003�.

13 P. Wang and C. M. Jensen, J. Alloys Compd. 379, 99 �2004�.
14 H. W. Brinks, C. M. Jensen, S. S. Srinivasan, B. C. Hauback, D.

Blanchard, and K. Murphy, J. Alloys Compd. 376, 215 �2004�;
D. Sun, T. Kiyobayashi, H. T. Takeshita, N. Kuriyama, and C.
M. Jensen, ibid. 337, L8 �2002�.

15 R. T. Walters and J. H. Scogin, J. Alloys Compd. 379, 135
�2004�.

16 V. Ozolins, E. H. Majzoub, and T. J. Udovic, J. Alloys Compd.
375, 1 �2004�; E. H. Majzoub and K. J. Gross, ibid. 356–357,
363 �2003�.

17 J. M. Bellosta von Colbe, B. Bogdanović, M. Felderhoff, A. Pom-
merin, and F. Schüth, J. Alloys Compd. 370, 104 �2004�.

18 J. Graetz, J. J. Reilly, and J. Johnson, A. Yu. Ignatov, and T. A.
Tyson, Appl. Phys. Lett. 85, 500 �2004�.

19 P. Vajeeston, P. Ravindran, R. Vidya, H. Fjellvag, and A. Kjek-
shus, Appl. Phys. Lett. 82, 2257 �2003�.

20 J. Iniguez, T. Yildirim, T. J. Udovic, M. Sulic, and C. M. Jensen,
Phys. Rev. B 70, 060101�R� �2004�; O. M. Lovvik and S. M.
Opalka, ibid. 71, 054103 �2005�.

21 A. Aguayo and D. J. Singh, Phys. Rev. B 69, 155103 �2004�.
22 O. M. Løvvik, J. Alloys Compd. 356–357, 178 �2003�.
23 W. Luo and K. J. Gross, J. Alloys Compd. 385, 224 �2004�.
24 P. Jena and S. N. Khanna �unpublished�; B. K. Rao, P. Jena, S.

Burkart, G. Gantefor and G. Seifert, Phys. Rev. Lett. 86, 692
�2001�.

25 C. M. Araújo, R. Ahuja, J. M. Osorio Guillén, and P. Jena, Appl.
Phys. Lett. 86, 251913 �2005�.

26 C. M. Jensen �private communication�.
27 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 �1965�.
28 P. E. Blöchl, Phys. Rev. B 50, 17953 �1994�.
29 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 �1996�.
30 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 �1992�.
31 I. F. Silvera, Rev. Mod. Phys. 52, 393 �1980�.
32 B. Hammer, L. B. Hansen, and J. K. Norskov, Phys. Rev. B 59,

7413 �1999�.
33 J. F. Paul and P. Sautet, Phys. Rev. B 53, 8015 �1996�.
34 X. Z. Ke and I. Tanaka, Phys. Rev. B 71, 024117 �2005�.
35 P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49,

16223 �1994�.
36 B. Silvi and A. Savin, Nature �London� 371, 683 �1994�.
37 B. C. Hauback, H. W. Brinks, C. M. Jensen, K. Murphy, and A. J.

Maeland, J. Alloys Compd. 358, 142 �2003�.
38 J. M. Osorio-Guillén, S. I. Simak, Y. Wang, B. Johansson, and R.

Ahuja, Solid State Commun. 123, 257 �2002�.
39 S. I. Simak, U. Häussermann, I. A. Abrikosov, O. Eriksson, J. M.

Wills, S. Lidin, and B. Johansson, Phys. Rev. Lett. 79, 1333
�1997�.

40 N. Watari, S. Ohnishi, and Y. Ishii, J. Phys.: Condens. Matter 12,
6799 �2000�.

ARAÚJO et al. PHYSICAL REVIEW B 72, 165101 �2005�

165101-6


	Virginia Commonwealth University
	VCU Scholars Compass
	2005

	Vacancy-mediated hydrogen desorption in NaAlH4
	C. Moysés Araújo
	S. Li
	R. Ahuja
	Puru Jena
	Downloaded from


	tmp.1430505009.pdf.nQwnn

