36 research outputs found

    Chemical Diversity and Complexity of Scotch Whisky as Revealed by High-Resolution Mass Spectrometry

    Get PDF
    Scotch Whisky is an important product, both culturally and economically. Chemically, Scotch Whisky is a complex mixture, which comprises thousands of compounds, the nature of which are largely unknown. Here, we present a thorough overview of the chemistry of Scotch Whisky as observed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Eighty-five whiskies, representing the majority of Scotch Whisky produced and sold, were analyzed by untargeted high-resolution mass spectrometry. Thousands of chemical formulae were assigned for each sample based on parts-per-billion mass accuracy of FT-ICR MS spectra. For the first time, isotopic fine structure analysis was used to confirm the assignment of high molecular weight CHOS species in Scotch Whisky. The assigned spectra were compared using a number of visualization techniques, including van Krevelen diagrams, double bond equivalence (DBE) plots, as well as heteroatomic compound class distributions. Additionally, multivariate analysis, including PCA and OPLS-DA, was used to interpret the data, with key compounds identified for discriminating between types of whisky (blend or malt) or maturation wood type. FT-ICR MS analysis of Scotch Whisky was shown to be of significant potential in further understanding of the complexity of mature spirit drinks and as a tool for investigating the chemistry of the maturation processes. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13361-016-1513-y) contains supplementary material, which is available to authorized users

    Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome

    Get PDF
    BACKGROUND: The definition of the terroir concept is one of the most debated issues in oenology and viticulture. The dynamic interaction among diverse factors including the environment, the grapevine plant and the imposed viticultural techniques means that the wine produced in a given terroir is unique. However, there is an increasing interest to define and quantify the contribution of individual factors to a specific terroir objectively. Here, we characterized the metabolome and transcriptome of berries from a single clone of the Corvina variety cultivated in seven different vineyards, located in three macrozones, over a 3-year trial period. RESULTS: To overcome the anticipated strong vintage effect, we developed statistical tools that allowed us to identify distinct terroir signatures in the metabolic composition of berries from each macrozone, and from different vineyards within each macrozone. We also identified non-volatile and volatile components of the metabolome which are more plastic and therefore respond differently to terroir diversity. We observed some relationships between the plasticity of the metabolome and transcriptome, allowing a multifaceted scientific interpretation of the terroir concept. CONCLUSIONS: Our experiments with a single Corvina clone in different vineyards have revealed the existence of a clear terroir-specific effect on the transcriptome and metabolome which persists over several vintages and allows each vineyard to be characterized by the unique profile of specific metabolites.Andrea Anesi, Matteo Stocchero, Silvia Dal Santo, Mauro Commisso, Sara Zenoni, Stefania Ceoldo, Giovanni Battista Tornielli, Tracey E. Siebert, Markus Herderich, Mario Pezzotti and Flavia Guzz

    A grape and wine chemodiversity comparison of different appellations in Burgundy: Vintage vs terroir effects.

    No full text
    This study aimed at assessing the ability of high resolution Fourier Transform Ion Cyclotron Resonance - Mass Spectrometry (FTICR-MS) to differentiate grapes and corresponding wines from distinct vineyards managed by a same producer, according to complex chemical fingerprints. Grape extracts (at harvest) and corresponding wines from four different vineyards, sampled immediately after the alcoholic fermentation over three successive vintages, were analysed by FTICR-MS. Thousands of metabolites that are specific to a given vintage, or a given class (wine, skin or must) could be revealed, thus emphasising a strong vintage effect. The same wines were reanalyzed after a few years in bottle. Within the frame of this study, FTICR-MS along with multivariate statistical analyses could reveal significant terroir-discriminant families of metabolites from geographically close - though distinct - vineyards, but only after a few years of bottle ageing. It is supposed that the chemical composition of a wine holds memories of various environmental factors that have impacted its metabolic baggage at the moment of its elaboration. For the first time, such preliminary results indicate that non-targeted experiments can reveal such memories through terroir-related metabolic signatures of wines on a regional-scale that can potentially be as small as the countless "climats" of Burgundy

    High precision mass measurements for wine metabolomics.

    Get PDF
    An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS(2). In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy

    Yeast interaction on Chardonnay wine composition: Impact of strain and inoculation time.

    No full text
    It is of great importance to understand the molecular characteristics and substantial chemical transformations due to yeast-yeast interaction. Non-targeted metabolomics was used to unravel must in fermentation composition, inoculated with non-Saccharomyces (NS) yeasts and Saccharomyces cerevisiae (S) for sequential fermentation. ultrahigh-resolution mass spectrometry was able to distinguish thousands of metabolites and provides deep insights into grape must composition allowing better understanding of the yeast-yeast interactome. The dominance of S, characterized by a metabolic richness not found with NS, is dependent on inoculation time and on the yeast species present. Co-inoculation leads to the formation of new compounds, reflecting a reshuffling of yeast metabolism linked to interaction mechanisms. Among the modifications observed, metabolomic unravels deep changes in nitrogen metabolism due to yeast-yeast interactions and suggests that the redistribution pattern affects two different routes, the pentose phosphate and the amino acid synthesis pathways

    Exploring yeast interactions through metabolic profiling

    No full text
    International audienceAs a complex microbial ecosystem, wine is a particularly interesting model for studying interactions between microorganisms as fermentation can be done by microbial consortia, a unique strain or mixed culture. The effect of a specific yeast strain on its environments is unique and characterized by its metabolites and their concentration. With its great resolution and excellent mass accuracy, ultrahigh resolution mass spectrometry (uHRMS) is the perfect tool to analyze the yeast metabolome at the end of alcoholic fermentation. This work reports the change in wine chemical composition from pure and mixed culture fermentation with Lachancea thermotolerans, Starmerella bacillaris, Metschnikowia pulcherrima and S. cerevisiae. We could clearly differentiate wines according to the yeast strain used in single cultures and markers, which reflect important differences between the yeast species, were extracted and annotated. Moreover, uHRMS revealed underlining intra species metabolomics differences, showing differences at the strain level between the two Starmerella bacillaris. Non volatile metabolomics analysis of single and sequential fermentations confirmed that mixed fermentations lead to a different composition. Distinct metabolites appeared in wines from sequential fermentation compared to single fermentation. This suggests that interactions between yeasts are not neutral

    Fluorescence fingerprinting of bottled white wines can reveal memories related to sulfur dioxide treatments of the must.

    No full text
    For the first time, Excitation Emission Matrix (EEM) fluorescence spectroscopy was combined with parallel factor statistical analysis (PARAFAC) and applied to a set of 320 dry white wines of the Chardonnay grape variety. A four component PARAFAC model (C1, C2, C3 and C4) best explained the variability of fluorescence signatures of white wines. Subtle changes were observed in EEMs of white wines from two different vintages (2006 and 2007), where different concentrations of sulfur dioxide (0, 4, and 8 g·hL(-1)) were added to the grape must at pressing. PARAFAC results clearly indicated that sulfur dioxide added to the must subsequently influenced white wine chemistry into three distinct sulfur dioxide dose-dependent aging mechanisms. For both vintages, C1 and C2 were the dominant components affected by sulfur dioxide and likely reacting with phenolic compounds associated with some presumably proteinaceous material. Distinct component combinations revealed either SO2 dependent or vintage-dependent signatures, thus, showing the extent of the complex versatile significance underlying such fluorescence spectra, even after several years of bottle aging
    corecore