199 research outputs found

    Towards better classification of land cover and land use based on convolutional neural networks

    Get PDF
    Land use and land cover are two important variables in remote sensing. Commonly, the information of land use is stored in geospatial databases. In order to update such databases, we present a new approach to determine the land cover and to classify land use objects using convolutional neural networks (CNN). High-resolution aerial images and derived data such as digital surface models serve as input. An encoder-decoder based CNN is used for land cover classification. We found a composite including the infrared band and height data to outperform RGB images in land cover classification. We also propose a CNN-based methodology for the prediction of land use label from the geospatial databases, where we use masks representing object shape, the RGB images and the pixel-wise class scores of land cover as input. For this task, we developed a two-branch network where the first branch considers the whole area of an image, while the second branch focuses on a smaller relevant area. We evaluated our methods using two sites and achieved an overall accuracy of up to 89.6% and 81.7% for land cover and land use, respectively. We also tested our methods for land cover classification using the Vaihingen dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 90.7%. © Authors 2019

    Accurate matching and reconstruction of line features from ultra high resolution stereo aerial images

    Get PDF
    In this study, a new reconstruction approach is proposed for the line segments that are nearly-aligned(<= 10 degrees) with the epipolar line. The method manipulates the redundancy inherent in line pair-relations to generate artificial 3D point entities and utilize those entities during the estimation process to improve the height values of the reconstructed line segments. The best point entities for the reconstruction are selected based on a newly proposed weight function. To test the performance of the proposed approach, we selected three test patches over a built up area of the city of Vaihingen-Germany. Based on the results, the proposed approach produced highly promising reconstruction results for the line segments that are nearly-aligned with the epipolar line

    Building Detection by Dempster-Shafer Fusion of LIDAR Data and Multispectral Aerial Imagery

    Get PDF
    A method for the classification of land cover in urban areas by the fusion of first and last pulse LIDAR data and multi-spectral images is presented. Apart from buildings, the classes "tree", "grass land", and "bare soil" are also distinguished by a classification method based on the theory of Dempster-Shafer for data fusion. Examples are given for a test site in Germany

    Investigations on skip-connections with an additional cosine similarity loss for land cover classification

    Get PDF
    Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material of the earth's surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the features of the pixels belonging to the same category inside one mini-batch, i.e.These features should be close in feature space. Our experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites. © Authors 2020. All rights reserved

    Marked point processes for the automatic detection of bomb craters in aerial wartime images

    Get PDF
    Many countries were the target of air strikes during the Second World War. The aftermath of such attacks is felt until today, as numerous unexploded bombs or duds still exist in the ground. Typically, such areas are documented in so-called impact maps, which are based on detected bomb craters. This paper proposes a stochastic approach to automatically detect bomb craters in aerial wartime images that were taken during World War II. In this work, one aspect we investigate is the type of object model for the crater: we compare circles with ellipses. The respective models are embedded in the probabilistic framework of marked point processes. By means of stochastic sampling the most likely configuration of objects within the scene is determined. Each configuration is evaluated using an energy function which describes the conformity with a predefined model. High gradient magnitudes along the border of the object are favoured and overlapping objects are penalized. In addition, a term that requires the grey values inside the object to be homogeneous is investigated. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global optimum of the energy function. Afterwards, a probability map is generated from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively, which results in an impact map. Our results, based on 22 aerial wartime images, show the general potential of the method for the automated detection of bomb craters and the subsequent automatic generation of an impact map. © Authors 2019

    Contextual classification of point cloud data by exploiting individual 3d neigbourhoods

    Get PDF
    The fully automated analysis of 3D point clouds is of great importance in photogrammetry, remote sensing and computer vision. For reliably extracting objects such as buildings, road inventory or vegetation, many approaches rely on the results of a point cloud classification, where each 3D point is assigned a respective semantic class label. Such an assignment, in turn, typically involves statistical methods for feature extraction and machine learning. Whereas the different components in the processing workflow have extensively, but separately been investigated in recent years, the respective connection by sharing the results of crucial tasks across all components has not yet been addressed. This connection not only encapsulates the interrelated issues of neighborhood selection and feature extraction, but also the issue of how to involve spatial context in the classification step. In this paper, we present a novel and generic approach for 3D scene analysis which relies on (i) individually optimized 3D neighborhoods for (ii) the extraction of distinctive geometric features and (iii) the contextual classification of point cloud data. For a labeled benchmark dataset, we demonstrate the beneficial impact of involving contextual information in the classification process and that using individual 3D neighborhoods of optimal size significantly increases the quality of the results for both pointwise and contextual classification

    An iterative inference procedure applying conditional random fields for simultaneous classification of land cover and land use

    Get PDF
    Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification form a hierarchy consisting of two layers: a land cover layer and a land use layer. We apply Conditional Random Fields (CRF) at both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result

    Supervised detection of bomb craters in historical aerial images using convolutional neural networks

    Get PDF
    The aftermath of the air strikes during World War II is still present today. Numerous bombs dropped by planes did not explode, still exist in the ground and pose a considerable explosion hazard. Tracking down these duds can be tackled by detecting bomb craters. The existence of a dud can be inferred from the existence of a crater. This work proposes a method for the automatic detection of bomb craters in aerial wartime images. First of all, crater candidates are extracted from an image using a blob detector. Based on given crater references, for every candidate it is checked whether it, in fact, represents a crater or not. Candidates from various aerial images are used to train, validate and test Convolutional Neural Networks (CNNs) in the context of a two-class classification problem. A loss function (controlling what the CNNs are learning) is adapted to the given task. The trained CNNs are then used for the classification of crater candidates. Our work focuses on the classification of crater candidates and we investigate if combining data from related domains is beneficial for the classification. We achieve a F1-score of up to 65.4% when classifying crater candidates with a realistic class distribution. © Authors 2019. CC BY 4.0 License

    Modeling spacecraft oscillations in hrsc images of mars express

    Get PDF
    Since January 2004 the High Resolution Stereo Camera (HRSC) is mapping planet Mars. The multi-line sensor on board the ESA Mission Mars Express images the Martian surface with a resolution of up to 1 2 m per pixel in three dimensions and in color. As part of the Photogrammetric/Cartographic Working Group of the HRSC Science Team the Institute of Photogrammetry and GeoInformation (IPI) of the Leibniz Universitat Hannover is involved in photogrammetrically processing the HRSC image data. To derive high quality 3D surface models, color orthoimages or other products, the accuracy of the observed position and attitude information in many cases should be improved. This is carried out via a bundle adjustment. In a considerable number of orbits the results of the bundle adjustment are disturbed by high frequency oscillations. This paper describes the impact of the high frequency angular spacecraft movement to the processing results of the last seven years of image acquisition and how the quality of the HRSC data products is significantly improved by modeling these oscillations.DLR/50 QM 090

    Multi-source hierarchical conditional random field model for feature fusion of remote sensing images and LiDAR data

    Get PDF
    Feature fusion of remote sensing images and LiDAR points cloud data, which have strong complementarity, can effectively play the advantages of multi-class features to provide more reliable information support for the remote sensing applications, such as object classification and recognition. In this paper, we introduce a novel multi-source hierarchical conditional random field (MSHCRF) model to fuse features extracted from remote sensing images and LiDAR data for image classification. Firstly, typical features are selected to obtain the interest regions from multi-source data, then MSHCRF model is constructed to exploit up the features, category compatibility of images and the category consistency of multi-source data based on the regions, and the outputs of the model represents the optimal results of the image classification. Competitive results demonstrate the precision and robustness of the proposed method
    • …
    corecore