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ABSTRACT: 

 

Pixel-based land cover classification of aerial images is a standard task in remote sensing, whose goal is to identify the physical material 

of the earth’s surface. Recently, most of the well-performing methods rely on encoder-decoder structure based convolutional neural 

networks (CNN). In the encoder part, many successive convolution and pooling operations are applied to obtain features at a lower 

spatial resolution, and in the decoder part these features are up-sampled gradually and layer by layer, in order to make predictions in 

the original spatial resolution. However, the loss of spatial resolution caused by pooling affects the final classification performance 

negatively, which is compensated by skip-connections between corresponding features in the encoder and the decoder. The most 

popular ways to combine features are element-wise addition of feature maps and 1x1 convolution. In this work, we investigate skip-

connections. We argue that not every skip-connections are equally important. Therefore, we conducted experiments designed to find 

out which skip-connections are important. Moreover, we propose a new cosine similarity loss function to utilize the relationship of the 

features of the pixels belonging to the same category inside one mini-batch, i.e. these features should be close in feature space. Our 

experiments show that the new cosine similarity loss does help the classification. We evaluated our methods using the Vaihingen and 

Potsdam dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 91.1% for both test sites. 

 

 

1. INTRODUCTION 

The goal of land cover classification is to assign a class label for 

each image pixel so that the physical material of its surface (e.g. 

grass, asphalt) is identified. The pixel-based classification 

(semantic segmentation in computer vision) of images has been 

tackled by supervised methods. Recently, Convolutional Neural 

Networks (CNN) variants have mostly been applied for this task, 

in particular fully convolution networks (FCN, Long et al., 2015), 

sometimes using encoder-decoder architectures (e.g. Noh et al., 

2015; Ronneberger et al., 2015; Badrinarayanan et al., 2017). 

Variants of these networks have also been applied for land cover 

classification while using aerial images as input, e.g. (Audebert 

et al., 2018; Marmanis et al., 2018; Maggiori et al., 2017). A 

remaining problem is the poor delineation of boundaries due to 

the loss of spatial resolution caused by the pooling layers. Many 

strategies have been designed to solve that problem. For instance, 

Sherrah (2016) used dilated convolutions to avoid pooling; 

Marmanis et al. (2018) extracted boundaries explicitly and 

considered this information in the CNN. Another promising 

strategy is to use skip-connections, i.e. upsampling low 

resolution feature maps and adding high resolution features from 

the encoder part of the CNN (Marmanis et al., 2018; Audebert et 

al., 2018). Element-wise addition of feature maps is the most 

popular method of combination. Yang et al. (2019) have shown 

successfully how the optimal combination of high-resolution 

features and upsampled ones can be learned in the form of 1x1 

convolutions to combine the feature maps. 

 

In this paper, we investigate the question whether all skip-

connections between convolution blocks in the encoder part and 

corresponding blocks in decoder part are equally important. To 

do so, we compare different network variants with different sets 

of skip connections, removing one set of connections after the 

other one starting from the outermost ones (the ones relating the 

information at the highest spatial resolution). In this way we 

obtain a best-performing architecture for land cover 

classification. We also discuss the contribution of skip-

connections to the classicisation near object boundaries by 

evaluating the classification performance for pixels inside 

boundary areas and outside boundary areas separately. 

 

Moreover, the standard loss function for optimizing a CNN is 

cross-entropy, which tries to make the distribution of predictions 

approach the true distributions of categories. However, inside one 

mini-batch, it does not take into account the relationship between 

pixels belonging to the same category. It is obvious that the 

features of these pixels should be similar and, thus, close to each 

other in feature space. During training, we know the true labels 

of all pixels in one mini-batch, thus we can add an additional con-

straint on the features of the pixels belonging to the same cate-

gory, so that their features are to be similar. To achieve this aim, 

we first calculate the mean feature vector of these pixels, and then 

calculate the cosine similarity between each feature and the mean 

feature vector, which is to be maximized. By designing the cosine 

similarity loss, we are inspired by the focal loss (Lin et al., 2017) 

to apply a penalty on the well-predicted pixels, so that their 

contributions to the loss are supressed. Therefore, our cosine 

similarity loss focuses on pixels that are hard to be classified.  

 

In this paper, we use high-resolution aerial imagery and derived 

data such as a Digital Surface Model (DSM) and a Digital Terrain 

Model (DTM) as data source. We apply an encoder-decoder 

network for land cover classification, where the encoder consists 

of two branches. The first branch requires images of three bands 

(e.g. RGB) as input and the second branch requires a composite 

image (e.g. consisting of the normalised DSM (nDSM) and the 

red and infrared bands of an image) as input. The two branches 
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are fused at the beginning of the decoder part. The scientific 

contributions of this paper can be summarized as follows: 

 

 We investigate the skip-connections to differentiate important 

skip-connections and non-important ones, which results in an 

optimized CNN architecture.  

 We investigate the contribution of skip-connections to the 

classification performance, showing that the strongest 

improvement is due to skip-connections between layers at 

coarse spatial resolutions.  

 Beyond the cross-entropy loss, we propose a new loss, the 

cosine similarity loss, to exploit the inherent relationship of 

pixels belonging to the same category.  

 

For all the tasks, we conduct experiments using the Vaihingen 

and Potsdam datasets of the ISPRS 2D semantic labelling 

challenge. In section 2, we give a review of related work. Our 

approaches for land cover classification are presented in section 

3. Section 4 describes the experimental evaluation of our 

approach. Conclusions and an outlook are given in section 5. 

 

 

2. RELATED WORK 

The goal of land cover classification is to predict class labels at 

pixel-level for input images. Recently, this task has been solved 

by applying CNN variants which can directly deliver dense pre-

dictions, e.g. FCN (Long et al., 2015 or encoder-decoder based 

networks (Noh et al., 2015). In these networks, convolution and 

pooling operations are applied to the input image, resulting in 

lower spatial resolution signal maps, which are then up-sampled 

to the full resolution of input image for dense prediction. In (Long 

et al., 2015) the upsampling from the lowest spatial resolution to 

the full one is performed in one step, whereas encoder-decoder 

networks apply a decoder in a structure that is symmetric to the 

one of the encoder to upsample the low resolution feature map, 

e.g. SegNet (Badrinarayanan et al., 2017) and U-Net (Ronne-

berger et al., 2015), applying end-to-end learning of all parame-

ters. In these networks, pooling is applied mainly to enlarge the 

receptive field to incorporate more context information in an im-

plicit way. One main disadvantage caused by pooling is the loss 

of spatial resolution, leading to inaccurate object boundaries. 

Many authors apply skip-connections that directly connect fea-

ture maps from the encoder to their corresponding counterparts 

in the decoder to mitigate this problem e.g. (Long et al., 2015; 

Zhao et al., 2017). In land cover classification, variants of such 

networks have been used and achieved promising results. Mar-

manis et al. (2018) apply a Holistically-Nested Edge Detection 

(HED) framework (Xie et al., 2017) to extract edge maps from 

aerial images. Subsequently, the edge maps and the aerial images 

are combined, serving as input for FCN and SegNet for dense 

prediction. Although they achieve good results, they suffer from 

many training stages and a huge number of parameters. Audebert 

et al. (2018) investigate SegNet and ResNet (He et el., 2016) and 

the integration of multispectral and height information in one 

model, and achieve promising results. Both methods just cited 

use skip-connections by a simple elementwise addition of feature 

maps (Long et al., 2015). Thus, the combination of the features 

of different resolution cannot be learned. Maggiori et al. (2017) 

propose a method to learn feature combinations: first, they con-

catenate feature maps of different resolutions, and then they con-

volve the concatenated maps with 1 x 1 filters. All methods men-

tioned so far apply skip-connections solely before the classifica-

tion layer. In a symmetric encoder-decoder structure, the feature 

maps of the encoder part can be utilized to enrich the representa-

tion in the decoder part, e.g. U-Net (Ronneberger et al., 2015), 

where the skip-connections are introduced between the last con-

volutional layers in corresponding encoder and decoder convolu-

tion blocks symmetrically. They only concatenate the feature 

maps for further processing. Yang et al. (2019) combined the 

ideas of Ronneberger et al. (2015) and Maggiori et al. (2017) by 

building a structure similar to U-Net, but concatenating the out-

puts of all convolutional layers at each resolution and using 1 x 1 

convolutions to learn the combination of encoder and decoder 

features. A question that has not been investigated so far to the 

best of our knowledge is whether all skip connections are equally 

important and which skip connections have the highest impact on 

the classification results.  

 

Up to now, a similarity loss has mainly been applied to explore 

the relationship between samples consisting of pairs. Hadsell et 

al. (2006) proposed the contrastive loss to minimize the Euclidian 

distances of similar pairs and maximize the Euclidian distances 

of dissimilar pairs, with the goal to yield a representation where 

the Euclidean distance can be used to measure the similarity of 

image pairs. Another example using Euclidian distance is Hoffer 

et al. (2015) where the authors proposed the triplet loss to learn 

representations that are useful for tasks such as image retrieval. 

Hoffer et al. build triplets consisting of positive and negative 

pairs and construct a loss that draws the feature vectors of posi-

tive pairs close to each other while pushing the feature vectors of 

negative pairs away from each other. However, the Euclidian dis-

tance of two feature vectors is unbounded. To obtain a result that 

is normalized between -1 and 1, the cosine similarity has been 

proposed. For instance, Yi et al. (2014) proposed the binomial 

deviance loss based on cosine similarity for person re-identifica-

tion by employing a Siamese network, and achieved very prom-

ising results. This motivates our application of the cosine simi-

larity to measure similarity of two feature vectors. Wang et al. 

(2019) proposed a framework to generalize the losses mentioned 

so far. All of them are applied in a pair-wise context to force the 

network to learn a good representation of the object. The similar-

ity loss proposed in this paper is different from all losses men-

tioned so far because it leverages the available information about 

the class labels of the objects. Using this information, we want 

features of objects belonging to the same category to be similar. 

This is achieved by an additional cosine similarity loss for the 

objects belonging to the same category to make their features 

similar to the centroid of all feature vectors of that class.  

 

 

3. NETWORK 

3.1 Network architecture  

3.1.1 Network architecture: The network architecture used in 

this paper, referred to as FuseNet (Fig. 1), requires two different 

input images, each of size 256 x 256 pixels with three bands. In 

the encoder phase, two separate branches are applied on the two 

input images to extract features, and then the features of the two 

branches are fused by 1x1 convolutions before decoding. In each 

encoder branch, there are four convolution blocks, each 

consisting of three convolutional layers followed by batch 

normalization (BN; Ioffe et al., 2015) and a rectified linear unit 

(ReLU) for non-linearity. At the end of the block, there is a max-

pooling layer. Symmetrically, the decoder part consists of four 

blocks, each starting with an upsampling layer that applies 

bilinear interpolation, followed by three convolutional layers, 

batch normalization and a ReLU unit. The filter size of each 

convolution is 3 x 3. Optionally, at the end of each convolution 

block in the decoder part, there may be skip-connections; network 

variants differing by the type and number of skip-connections are 

described in section 3.2. Finally, to predict the class labels at the 
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resolution of the input image, there is a 1 x 1 convolutional layer 

converting the output of the previous layer to a vector of 𝑀 class 

scores for each of the 𝐻 ×𝑊 pixels of the input image, where 𝑀 

denotes the number of classes to be differentiated. For each pixel 

i of the image to be classified, this results in a vector 

𝒛𝒊 = (𝑧1
𝑖 , … , 𝑧𝑀

𝑖 )𝑇  of class scores, where ℂ =  {𝐶1, … , 𝐶𝑀} is the 

set of land cover classes and 𝑧𝑐
𝑖  is the class score for class 𝐶𝑐 . 

These class scores are normalised by a softmax function 

delivering the posterior probability 𝑃𝑖(𝐶𝑐|𝑥) for pixel i to take 

class label 𝐶𝑐 given the image data x: 

 

               𝑃𝑖(𝐶𝑐|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝒛𝒊, 𝐶𝑐) =  
𝑒𝑥𝑝 (𝑧𝑐𝑖 )

∑ 𝑒𝑥𝑝 (𝑧𝑙
𝑖)𝑀

𝑙=1

,     (1) 

 

3.1.2 Skip-connections: The structure of the skip-connections 

used in this paper is shown in Fig. 2. It is an extension of the 

learnable skip-connection of in (Yang et al., 2019). When linking 

encoder and decoder blocks at level N, we take the feature maps 

delivered by all convolutional blocks of that level. We denote a 

single feature map (a 2D array of height H and width W) by 𝒇𝒔, 
where s is an index of the feature map that runs over all feature 

maps delivered by all convolutional blocks. We apply a 3 x 3 

depth-wise convolution to every feature map:  

 

                                𝒗𝒔 = 𝑅𝑒𝐿𝑈(𝜔𝑠 ∗ 𝒇
𝒔 + 𝑏𝑠) .     (2) 

 

In equation 2, 𝒗𝒔 is the output feature maps, 𝜔𝑠 and 𝑏𝑠  are the 

parameters to be learnt, and the symbol * represents convolution. 

Note that these convolutions are only applied if a skip connection 

is established. Now we follow (Yang et al., 2019) and concate-

nate the feature maps 𝒗𝒔 to form a 3D tensor V whose dimension 

is H x W x S, where S is the total number of feature maps 

concatenated in V. After concatenation, a set of D 1x1 

convolutions is used to deliver D combined feature maps gd, 

where d is the index of the dth feature map. Denoting the element 

at position (r,c) of feature maps 𝒗𝒔  and gd by 𝑣𝑟,𝑐
𝑠  and 𝑔𝑟,𝑐

𝑑 , 

respectively, elements of the combined feature map are computed 

according to:  

 

                     𝑔𝑟,𝑐
𝑑 = 𝑅𝑒𝐿𝑈(∑ 𝜃𝑑

𝑠 ∙ 𝑣𝑟,𝑐
𝑠𝑆

𝑠=1 + 𝑏𝑑),                   (3) 

 

where 𝜃𝑑
𝑠  and 𝑏𝑑 are parameters to be learnt. The feature maps gd 

form the input to the first convolutional layer of the next decoder 

block in Fig. 1.  

 

 

 
 

Figure 2: Skip-connections. EN-CBN1, EN-CBN2: feature maps 

delivered by all convolutional blocks of the encoder 

blocks N of the upper and lower branches in Fig. 1, 

respectively. DE-CBN: feature maps of all 

convolutional blocks of the decoder block N in Fig. 1. 

The colours indicate from which convolutional block 

in Fig. 1 a feature map 𝒇𝒔  was delivered. 𝒗𝒔: feature 

map derived from 𝒇𝒔 by convolution; V: concatenation 

of all feature maps; gd: a feature map after 1 x 1 

convolution. 

 

3.1.3 Network variants: We developed some variants of the 

network described in Section 3.1.1 to investigate the effect of 

different definitions and configurations of skip-connections. The 

first network variant connects all convolution blocks of the 

encoder to their counterparts in the decoder (FuseNet-All). To 

investigate the importance of each group of skip-connections, we 

build different variants in which more and more skip-connections 

are removed. The names of these variants are shown in Table 1.  
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Figure 1: The network architecture (FuseNet). 
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variant skip connections 

FuseNet-All 
Connect all convolution blocks between encoder 
and decoder  

FuseNet-None no skip connections 

FuseNet-234 connect convolution blocks 2, 3 and 4 

FuseNet-34 connect convolution blocks 3 and 4 

FuseNet-4 only connect convolution blocks 4 

FuseNet-123 connect convolution blocks 1, 2 and 3 

FuseNet-1 only connect convolution blocks 1 
 

Table 1: Network variants with different skip-connections. 

 

3.2 Training  

3.2.1 Training using the extended focal loss: All parameters of 

the convolutional layers are learned during in the training pro-

cess, which is based on stochastic mini-batch gradient descent 

using backpropagation for computing the gradients. The standard 

loss we use for training in the experiments related to the structure 

of the network is the extended focal loss (Yang et al., 2019):  

 

  𝐿𝑓𝑜𝑐𝑎𝑙 = −
1

𝑊∙𝐻∙𝑁
∑ [𝑦𝑐

𝑖𝑘 ∙ (1 − 𝑃𝑖(𝐶𝑐|𝑋𝑘))
𝛾 ∙ 𝑙𝑜𝑔(𝑃𝑖(𝐶𝑐|𝑋𝑘))]𝑐,𝑖,𝑘 , (4) 

 

where k is the index of an image, Xk is the kth image in the mini-

batch and N is the number of images in a mini-batch. The 

indicator variable 𝑦𝑐
𝑖𝑘 is 1 if the training label of pixel i in image 

k is identical to 𝐶𝑐 and 0 otherwise, and 𝛾 is a hyperparameter. 

The sum in equation (4) is taken over all potential class labels for 

all pixels of all images of a mini-batch.  

 

3.2.2 Cosine similarity loss: In addition to the extended focal 

loss (equation 4), we propose an extension based on feature 

similarity. In a mini-batch, the pixels belonging to the same 

category should be close to each other in feature space, i.e. their 

features of the last layer (the one before the softmax function 

(equation 1) is applied) should be similar. Thus, an additional 

constraint on these features may support the learning procedure 

to deliver a better classifier.  

 

The implementation of this idea requires four steps, which are 

performed for all classes. First, for each pixel i of a class 𝐶𝑐 in 

the current minibatch, the raw class scores 𝒛𝒊  according to 

equation (1) are passed through the ReLU activation function, 

resulting in feature vectors 𝒂𝒊, i.e. 𝒂𝒊 =  𝑅𝑒𝐿𝑈(𝒛𝒊). After that, 

the mean feature vector 𝒖𝒄  of all the 𝑁𝑐  pixels of that class is 

determined: 

 

  𝒖𝒄 = 
1

𝑁𝑐
∑ 𝒂𝒊
𝑁𝑐
𝑖 .     (5) 

 

In the third step, the cosine similarity of each feature vector 𝒂𝒊 
and the mean feature vector 𝒖𝒄 is computed:  

 

 𝑐𝑜𝑠(𝒂𝒊, 𝒖𝒄) =
𝒂𝒊  ∙ 𝒖𝒄

‖𝒂𝒊‖2‖𝒖
𝒄‖2

.    (6) 

 

Finally, we want to maximize the cosine similarities of all pixels 

over all classes inside the mini-batch. During maximization, we 

also apply a penalty term which is inspired by the focal loss (Lin 

et al., 2017). For pixels that are well predicted (i.e. with high 

probability for belonging to their correct class 𝐶𝑐), the losses are 

suppressed, so that the loss focuses on pixels which are hard to 

be classified. As in the original focal loss, we expect this penalty 

term to accelerate the training procedure and deliver better 

classification performance. Thus, the cosine similarity loss 

function is defined according to:  
 

𝐿𝑐𝑜𝑠 =
1

𝑊∙𝐻∙𝑁
∑ ∑ [(1 − 𝑃𝑖(𝐶𝑐))

𝜍
∙ 𝑚𝑎𝑥(1 − 𝑐𝑜𝑠(𝒂𝒊, 𝒖𝒄) − 𝑚, 0)]

𝑁𝑐
𝑖𝑐 , (7) 

where 𝑚 is a margin to control the similarity and 𝜍 is a hyper-

parameter to control the influence of the penalty term. If this loss 

function is used in training, it is combined with the extended focal 

loss 𝐿𝑓𝑜𝑐𝑎𝑙according to equation 4, so that the combined loss that 

is optimized in the experiments involving 𝐿𝑐𝑜𝑠is  

 

  𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝐿𝑓𝑜𝑐𝑎𝑙 + 𝐿𝑐𝑜𝑠     (8) 

 

3.2.3 Hyperparamete settings: In the training procedure, we 

apply weight decay with 0.0005, a step learning policy. The 

learning rate was set to 0.01 and decreased to 0.001 after 15 

epochs in a total of 30 epochs training. The mini-batch size is 4. 

In the extended focal loss, the hyperparameter 𝛾 in equation 4 is 

set to 1 for all experiments. For all experiments in which the 

combined loss according to equation 8 is applied, the hyper-

parameters of the cosine similarity loss (equation 7) are set to 𝜍 
= 1 and m = 0.2.  

 

3.2.4 Implementation: All networks are implemented based on 

the tensorflow framework (Abadi et al., 2015). We use a GPU 

(Nvidia TitanX, 12GB) to accelerate training and inference. 

 

 

4. EXPERIMENTS 

4.1 Test Data und Test Setup 

4.1.1 Test Data: Our approaches for classification of land cover 

are evaluated on the Vaihingen and Potsdam datasets of the 

ISPRS 2D semantic labelling challenge. The former one consists 

of 33 colour infrared (CIR) images with a Ground Sampling Dis-

tance (GSD) of 9 cm, whereas the latter one consists of 38 

orthophotos (RGB-IR) with a GSD of 5 cm. In addition, nDSMs 

provided by Gerke (2015) were available. Following the 

benchmark protocol, in Vaihingen 16 images with known 

reference are used for training and the rest (17) for testing, and in 

Potsdam 24 images with known reference are used for training 

and the rest (14) for testing. There are six land cover classes: 

impervious surface (imp. surf.), building (build.), low vegetation 

(low veg.), tree, car and clutter (Wegner et al., 2017).  

 

4.1.2 Test setup: We extract windows of 256 x 256 pixels with 

an overlap of 128 pixels in both spatial dimensions from the 

training images, which results in 4426 training patches in Vaihin-

gen and 50784 training patches in Potsdam. In training, we 

applied data augmentation by rotations of 90°, 180°, 270°, hori-

zontal and vertical flipping (i.e. 6 times more data). In Vaihingen, 

due to the lack of a blue band, we use CIR instead of RGB images 

as the first input and a composite of the red and near infrared 

bands and the nDSM (RID) as the second input. In Potsdam, 

RGB and the composite RID serve as the inputs. During 

inference, the class labels for a patch of 256 x 256 pixels are pre-

dicted six times for the original image and variants that are 

flipped and rotated as the training images, and the probabilistic 

scores are multiplied to obtain a combined score for classifi-

cation. 

 

We performed two sets of experiments. The first set was 

dedicated to the comparison of the different network variants 

defined in Table 1. Here we used the extended focal loss (eq. 4) 

for training in all cases. For Vaihingen, we trained and tested all 

variants of Table 1, while for Potsdam, we selected the two 

variants performing best in Vaihingen (FuseNet-All and FuseNet-

234) as well as the variant without skip connections (FuseNet-

None). In the second set of experiments, we evaluated the 

effectiveness of the cosine similarity loss. In this set, we used the 

loss function 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  (equation 8) for training. We only 
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compared the network variants performing best on the basis of 

the extended focal loss (FuseNet-234) and the variant without 

skip-connections (FuseNet-None); the variants trained on the 

basis of that loss are identified by an asterisk, thus they are 

denoted by FuseNet-None* and FuseNet-234*, respectively.  

 

For evaluation, there are two reference datasets: the full reference 

contains class labels for all pixels, while the eroded reference 

does not consider the pixels near object boundaries (erosion by a 

circular disc of 3-pixel radius). For a comparison of variants, we 

use the full reference to compute the Overall Accuracy OA, i.e., 

the percentage of pixels whose class label determined by the 

CNN is identical to the reference, and the class-specific F1 

scores, i.e. the harmonic mean of precision and recall determined 

on a per-pixel level. We also determine the average F1 score 

(avg. F1) as the mean of F1 over all classes. For a comparison 

with the results of the ISPRS benchmark (Wegner et al., 2017), 

we report OA and F1 also for the eroded reference, i.e. just 

considering pixels that are not near to an object boundary. To 

gain deeper insights into the behaviour of the networks near 

object boundaries, we additionally determine the OA just for 

pixels near object boundaries (i.e., for the pixels without class 

labels in the eroded reference). In Vaihingen, 9.1% of the pixels 

are inside a boundary area and 90.9% pixels are outside boundary 

area; In Potsdam, 7.2% of the pixels are inside a boundary area 

and 92.8% pixels are outside boundary area. 

 

4.2 Evaluation: Comparison of Network Variants 

In this section, we report the results of the first set of experiments, 

conducted to compare different network variants (Table 1). The 

results of the evaluation of all experiments are shown in Table 2. 

Fig. 3 shows some exemplary results for some network variants 

and both datasets. In general, the CNN works very well on the 

both datasets in all variants, with an OA of more than 87% and 

an average F1 score of more than 71%. However, there are also 

areas which all networks fail to classify correctly (red ellipses in 

Fig. 3).  

 

4.2.1 Comparison of network variants: Comparing the results 

achieved by all network variants for Vaihingen (see Tab. 2), 

several observations can be made: 

 

1) Comparing FuseNet-234 and FuseNet-All, the former 

delivers slightly better results in terms of average F1 score 

while the OA is identical. The largest improvement in F1 

occurs for class clutter (2.1%). The removal of the skip-

connections between the blocks of the highest resolution has 

no impact on the OA in the boundary areas (OAb). This would 

indicate that the quality of the classification in boundaries is 

not positively affected by this specific connection.  

2) Additionally removing the skip-connection of convolution 

block 2 (FuseNet-34) still delivers comparable results to 

variants FuseNet-234 and FuseNet-All in terms of OA, yet 

with a decrease of average F1 score of 0.8%, mostly due to 

the worse performance for the class clutter, which is very 

heterogeneous and for which there are only few samples.  

3) Additionally removing the skip-connection of convolution 

block 3 (FuseNet-4) results in a negligible decrease of OA 

and a somewhat larger one for the average F1 score (1.6% 

compared to FuseNet-234), again mostly for the class clutter. 

Yet again, the classification accuracy in the boundary regions 

seems to be hardly affected, indicated by a slight decrease of 

0.6% OAb compared to FuseNet-234.  

4) When not using any skip-connections at all (FuseNet-None), 

there is again only a small difference in OA compared to 

FuseNet-234 (0.8%), and the difference in the boundary areas 

is of a similar size. However, there is a more obvious de-

crease in the F1 scores, particularly for the underrepresented 

classes car (3.8%) and clutter (21.3%). This leads to a signi-

ficant drop in the average F1 score (6.2%).  

 

These results show that skip-connections have hardly any impact 

on the OA, and the general assumption that they improve the 

quality of the classification near object boundaries is not con-

firmed, not even for the connections between high-resolution 

encoder and decoder blocks (blocks 1 in Fig. 1). Nevertheless, 

skip-connections have a positive impact on the performance of 

the classifier for underrepresented classes, as indicated by the F1 

scores. In this context, the skip-connections of convolution block 

4 are most important, which is somewhat counter-intuitive, be-

cause it is the block having the coarsest spatial resolution, and 

cars, corresponding to one of the classes that is most affected, 

have a small spatial resolution. This may be related to the obser-

vation made by He et al. (2016) that networks have difficulties in 

learning identity transformations, so that skip-connections 

(referred to as bypass connections in the reference) can support 

the training procedure. In general, the best-performing network 

is FuseNet-234, i.e. the network excluding the skip-connections 

between the outmost convolution blocks, though only by a very 

small margin.  

 

Are the skip-connections really the most important one? If we 

compare the results for the variant FuseNet-123, which has all 

 

Test Site Network 
F1 [%] avg. F1 

[%] 

OA 

[%] 

OAred 

[%] 
OAb 

[%] imp. surf. build. low. veg. tree car clutter 

Vaihingen 

FuseNet-None 89.0 93.5 81.2 86.1 77.7 15.9 73.9 87.3 90.2 58.3 

FuseNet-All 89.8 94.0 81.5 87.2 81.1 47.2 80.1 88.1 90.9 59.7 

FuseNet-234 89.9 94.0 81.6 86.9 80.8 49.3 80.4 88.1 91.0 59.9 

FuseNet-34 89.6 93.8 81.6 87.2 80.6 43.2 79.3 88.0 90.9 59.6 

FuseNet-4 89.6 93.8 81.2 87.0 80.8 40.4 78.8 87.9 90.7 59.3 

FuseNet-123 89.5 93.4 81.4 87.1 80.8 50.2 80.4 87.9 90.7 59.9 

FuseNet-1 89.5 93.5 80.9 86.2 75.9 0.3 71.5 87.5 90.3 59.1 

Potsdam 

FuseNet-None 90.1 95.1 84.8 85.3 88.8 53.1 82.9 87.8 90.1 58.4 

FuseNet-All 90.8 95.9 85.5 85.7 90.4 50.5 83.1 88.6 90.7 61.2 

FuseNet-234 90.9 96.0 85.4 85.7 90.8 53.8 83.8 88.6 90.7 61.2 
 

Table 2. Results of land cover classification for different network variants defined in Table 1 using the extended focal loss (eq. 4) for 

training. F1: F1 score, OA: Overall Accuracy, both determined on the basis of the full reference; OAred: Overall Accuracy 

based on the eroded reference; OAb: Overall Accuracy for pixels in the boundary areas. Best scores per test site and metric 

are printed in bold font.  
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skip-connections except the one at convolution block 4 to the 

network which only uses this connection (FuseNet-4), the OA of 

both networks is identical, but there is an advantage of FuseNet-

123 in the average F1 score (1.6%), mainly due to a better 

performance for class clutter. However, the training time per 

epoch of FuseNet-C-123 is about 2.5 times longer and it also 

requires more memory. We can say that the skip-connections of 

convolution block 4 improves the quality almost to the same level 

as the combination of all other skip-connections in our network 

while requiring much less computation capacity. 

 

If we apply skip-connections only in convolution block 1 

(FuseNet-1), the OA is nearly identical to the one achieved when 

not using any skip-connection at all (FuseNet-None), and it 

Examples for Vaihingen Reference FuseNet-None FuseNet-All FuseNet-234* 

     

     

     

Examples for Potsdam 

     

     

     
      

building impervious surface Tree low vegetation car clutter 
 

Figure 3: Data and exemplary classification results for both datasets. The first and second columns show the image and the reference, 

respectively; the other columns show the results for several network variants described in the main text. The colour code is 

given at the bottom of the figure. Red dashed ellipse: problematic areas for all network variants. 
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performs worse in the average F1 score (decrease of 2.4%), again 

due to problems with the classes car and clutter. Of course, 

FuseNet-1 performs considerably worse than the one using only 

convolution block 4 (FuseNet-4). This indicates that the skip-

connections of convolution block 1 does not play a significant 

role in the classification and underlines that the skip-connections 

at block 4 are more important.  

 

The results for Potsdam shown in Tab. 2 confirm that using skip-

connections improves the results by a margin in the order of 

about 1% in OA and mean F1 score. Here, the difference in the 

boundary areas is somewhat larger (2%), which indicates that in 

this case, the skip-connections do contribute to a better 

classification of object boundaries, though the effect is small. 

Again, FuseNet-234 slightly outperforms FuseNet-All in terms of 

average F1 score.  

 

4.2.2 Discussion of the contribution of skip-connections in 

boundary areas: The primary goal of applying skip-connections 

is to address the loss of spatial resolution caused by pooling 

operations. It is frequently expected that using skip-connections 

would deliver a better boundary delineation, because they add 

precise location information from high-resolution features. 

However, our experiments indicate that skip connections 

between low-resolution layers seem to be more important than 

those between high-resolution layers. An analysis of the 

classification accuracies in the boundary areas shows relatively 

small differences between the variants. In general, the 

improvements in OA in the boundary regions (OAb) and in the 

areas outside the boundary areas (OAred) are of a similar size; in 

Vaihingen, the improvement of the best variant (FuseNet-234) 

over the worst one (FuseNet-None) is 0.8% in OAred and 1.6% in 

OAb, indicating that there is a very small relative improvement of 

accuracy near boundary areas due to the skip-connection. A 

similar observation can be made when analysing the data for 

Potsdam (improvement of FuseNet-234 over FuseNet-None by 

0.6% outside the boundaries vs. 1.8% near boundaries). 

Somewhat counter-intuitively, this small improvement does not 

mainly depend on skip-connections between the high-resolution 

layers of the network. In summary, skip-connections do have a 

positive effect on the quality of the classification both in boun-

dary areas and outside these areas. The improvement is larger in 

the boundary areas, but this effect is very small.  

 

4.3 Evaluation: Comparison of loss functions 

The intention of applying cosine similarity loss is to force the 

features of pixels belonging to the same category being similar, 

by making the features of the pixels of this category being close 

to their centroid. Tab. 3 shows the evaluation results of the 

network variants that were trained using the combined loss of 

equation 8 and, thus, considering the cosine similarity loss. 

Compared to FuseNet-None (Tab. 2), the results achieved when 

using the cosine similarity loss (FuseNet-None*) are improved 

both in Vaihingen and Potsdam. In terms of OA, the increase is 

not very large (up to 0.5%). However, the average F1 scores are 

improved by 3.0% in Vaihingen and 0.7% in Potsdam, mainly 

due to a better performance for car and clutter. When comparing 

the variants using skip-connections (FuseNet-234* vs. FuseNet-

234), there are also slight improvement in terms of OA and 

average F1 score due to the new loss for both test sites, though 

they are smaller than 1% in all cases. The improvements inside 

and outside boundary areas due to the cosine similarity loss are 

of a similar size. In conclusion, the comparison shows that cosine 

similarity loss does help in the classification of land cover 

classes. While the improvement in overall accuracy is relatively 

small, there is a larger impact on the performance of classes that 

occur rarely in the data.  

 

4.4 Comparison to the state of the art 

A comparison with other methods based on the scoreboard of the 

ISPRS benchmark (Wegner et al., 2017) is shown in Tab. 4. 

Following the convention of the ISPRS benchmark, the eroded 

reference is used for evaluation; the comparison is based on the 

variant FuseNet-234* (listed as “ours” in the table). For 

Vaihingen, the benchmark website only lists two (out of more 

than 100) contributions that deliver an OA that is better than the 

one of our method. The OA of FuseNet-234* is only 0.5% worse 

than the best one (HUSTW5), yet our method outperforms their 

average F1 score (without considering the class clutter, following 

the benchmark protocol) by 2.2%, which is mainly due to our 

huge improvement of the identification of class car (more than 

13% in term of F1 score). The other method better than ours in 

term of OA is NLPR3. However, their increase of OA is 

compensated by decrease of average F1 score (-0.6%). For 

Potsdam, the benchmark website lists three methods delivering 

better results than ours in term of OA. However, for the 

individual class building, low vegetation and tree, our method 

shows the ability of identification in first or second place. In 

conclusion, we take the results mentioned above as an indication 

that our method is on par with the current state of the art.  

 

 

5. CONCLUSION 

In this paper, we have proposed a variant of a CNN similar to U-

net for land cover classification. First, we generated different 

variants of the network with a different number of skip-

connections to investigate the relevance of these skip-

connections for the classification performance. Our experiments 

indicate that skip-connections between the low-resolution layers 

of the encoder and the decoder might be more important than the 

ones between the high-resolution layers. In general, the impact 

on the OA is low, but skip-connections lead to a noticeable im-

provement in the classification of classes having few samples. 

We also analysed the contributions of skip-connections in 

boundary areas, and found that they do have a very small positive 

effect. Second, we proposed a new cosine similarity loss to push 

pixels belonging to the same category inside one mini-batch to 

have similar feature vectors. The land cover classification profits 

from this loss slightly, but again, the effect is relatively small. 

Test Site Network 
F1 [%] avg. F1 

[%] 

OA 

[%] 

OAred 

[%] 
OAb

[%] imp. surf. build. low. veg. tree car clutter 

Vaihingen 
FuseNet-None* 89.3 93.6 81.5 86.6 78.8 31.6 76.9 87.6 90.6 58.5 

FuseNet-234* 90.1 94.0 81.8 87.1 82.2 49.7 80.8 88.3 91.1 60.2 

Potsdam 
FuseNet-None* 90.6 95.8 85.0 85.6 90.5 54.1 83.6 88.3 90.5 59.4 

FuseNet-234* 91.2 96.3 85.6 86.2 91.1 54.9 84.2 88.9 91.1 61.4 
 

Table 3. Results of land cover classification for different network variants defined in Table 1 using the extended focal loss (eq. 4) for 

training. F1: F1 score, OA: Overall Accuracy, both determined on the basis of the full reference; OAred: Overall Accuracy 

based on the eroded reference; OAb: Overall Accuracy for pixels in the boundary areas. Best scores per test site and metric 

are printed in bold font.  
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Finally, we compare our best-performing method with the state-

of-art from the ISPRS benchmark and found its performance to 

be on par with the best methods reported on the benchmark 

website.  

 

In future work, we want to verify the current findings regarding 

skip-connections for other methods of combining the signals 

from different layers (e.g. element-wise addition). Second, we are 

going to investigate the cosine similarity loss in more detail by 

tuning the hyper-parameters and comparing it to loss functions 

based on other measures of similarity of feature vectors, e.g. on 

the Euclidian distance.  

 

 

Table 4.  Comparison to the state-of-art (with eroded reference). 

𝐹1̅̅̅̅ : average F1 score, OA: Overall Accuracy. 
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Network 
F1 [%] 

𝐹1̅̅̅̅  

[%] 

OA  

[%] 
imp. 

surf. 
build. 

low. 

veg. 
tree car 

Vaihingen 

HUSTW5 93.3 96.1 86.4 90.8 74.6 88.2 91.6 

NLPR3 93.0 95.6 85.6 90.3 84.5 89.8 91.2 

ours 92.7 95.8 85.2 90.1 88.0 90.4 91.1 

Potsdam 

SWJ_2 94.4 97.4 87.8 87.6 94.7 92.4 91.7 

HUSTW3 93.8 96.7 88.0 89.0 96.0 92.7 91.6 

AMA_1 93.4 96.8 87.7 88.8 96.0 92.5 91.2 

ours 93.1 97.3 88.1 88.8 95.2 92.5 91.1 
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