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ABSTRACT: 

 

Land use and land cover are two important variables in remote sensing. Commonly, the information of land use is stored in geospatial 

databases. In order to update such databases, we present a new approach to determine the land cover and to classify land use objects 

using convolutional neural networks (CNN). High-resolution aerial images and derived data such as digital surface models serve as 

input. An encoder-decoder based CNN is used for land cover classification. We found a composite including the infrared band and 

height data to outperform RGB images in land cover classification. We also propose a CNN-based methodology for the prediction of 

land use label from the geospatial databases, where we use masks representing object shape, the RGB images and the pixel-wise class 

scores of land cover as input. For this task, we developed a two-branch network where the first branch considers the whole area of an 

image, while the second branch focuses on a smaller relevant area. We evaluated our methods using two sites and achieved an overall 

accuracy of up to 89.6% and 81.7% for land cover and land use, respectively. We also tested our methods for land cover classification 

using the Vaihingen dataset of the ISPRS 2D semantic labelling challenge and achieved an overall accuracy of 90.7%.  

 

 

1. INTRODUCTION 

The goal of land cover classification is to assign a class label for 

each image pixel so that the physical material of its surface (e.g. 

grass, asphalt) is identified. In contrast, land use describes the 

socio-economic function of a piece of land (e.g. residential, 

agricultural) which can contain many different land cover 

elements, while a specific land cover type can be a part of 

different land use objects. The information about land use is 

usually collected in geospatial databases, often acquired and 

maintained by national mapping agencies. The objects stored in 

these databases are typically represented by polygons with class 

labels indicating the object land use. The goal of land use 

classification is updating the existing database, which is expected 

to be easier if the results of land cover classification are available. 

In this paper, we propose a new method for the classification of 

land cover and land use based on high-resolution aerial imagery 

and derived data such as a Digital Surface Model (DSM) and a 

Digital Terrain Model (DTM). Both stages of the classification 

process are based on convolutional neural networks (CNN). 

 

The pixel-based classification (semantic segmentation) of images 

has been tackled by supervised methods, most recently by CNN 

such as the fully convolution network (FCN, Long et al., 2014) 

and encoder-decoder based networks (e.g. Noh et al., 2015, 

Badrinarayanan et al., 2017). These networks have also been 

applied for land cover classification based on aerial images 

(Audebert et al., 2018; Marmanis et al., 2018; Volpi and Tuia, 

2018; Sherrah, 2016). One of the main problems of such methods 

is a precise boundary delineation due to the loss of spatial 

resolution caused by the pooling layers of the CNN. Strategies 

for solving that problem include dilated convolutions to avoid 

pooling (Sherrah, 2016), extracting boundaries explicitly as an 

additional input (Marmanis et al., 2018) and fusing different data 

sources (Audebert et al., 2018). Another promising strategy is to 

use skip connections, i.e. upsampling low resolution feature maps 

and adding high resolution features from the encoder part of the 

CNN, e.g. (Marmanis et al., 2018). Inspired by Maggiori et al. 

(2017), we argue that a skip connection that can learn the 

combination of feature maps might improve the delineation of 

boundaries and, thus, improve the classification performance. 

Building on the SegNet architecture of Yang et al. (2018), we 

propose extensions that apply skip connections between the 

convolution blocks in the encoder part and corresponding blocks 

in the decoder part in a learnable way instead of elementwise 

addition. Furthermore, we propose two different methods for 

fusing RGB images with near infrared and height data. These 

extensions should lead to an improvement of the accuracy of land 

cover classification.  

 

For land use classification, the biggest challenge is the large 

variation of polygons in terms of their geometrical extent; for 

instance, road objects are thin and long, whereas residential 

objects may cover both, very large and quite small areas. This 

poses problems for CNN, because they require a fixed input patch 

size. Yang et al. (2018) tried to solve this problem by 

decomposing large polygons into smaller parts. They placed 

RGB data and land cover labels inside the polygons in fixed-size 

patches with a black background for classification. We argue that 

using black background leads to a loss of context information for 

a database object, while using land cover labels means that one 

neglects the uncertainties of land cover classification. We 

propose a representation of a polygon by a combination of its 

shape in the form of a binary mask while using image data (e.g. 

RGB) from a patch of fixed size. In addition, we use the class 

scores from land cover classification as input rather than the class 

labels. As the size and position of a polygon in a patch to be 

classified can vary a lot, we propose a two-branch network which 

uses a focus on the relevant part of the data region of interest, 

ROI) in addition to the whole input image. Moreover, 

decomposing polygons into patches implies that the information 

about polygon shape is partly lost. We propose another method 
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to convert irregular polygons to a fixed size fitting the input of 

the CNN by rescaling, so that shape information is preserved. The 

scientific contributions of this paper can be summarized as 

follows: 

 

 We propose networks incorporating learnable skip connections 

for land cover classification to achieve a better representation 

of the object boundaries in the results.  

 We propose new fusion frameworks for combining RGB 

images with infrared and height data, analysing the effects of 

the fusion on the results of land cover classification.  

 We proposed a CNN-based method for land use classification 

that improves existing work by using land cover posteriors 

instead of class labels as input and by applying a two-branch 

classification network, zooming in at the relevant part of the 

data (ROI) in addition to using a fixed-sized image patch.  

 We apply an additional method for bringing the polygons to the 

input size of the CNN by rescaling, so that the shapes of large 

polygons are preserved, while small objects will cover a larger 

portion of the CNN input.  

 

For both tasks, we conduct experiments using two test sites and 

compare the results to show the benefits and the remaining 

problems of the proposed methods. Land cover classification is 

also applied to the Vaihingen dataset of the ISPRS 2D semantic 

labelling challenge for a comparison to the state of the art. 

 

In section 2, we give a review of related work. Our approaches 

for land cover and land use classification are presented in sections 

3 and 4, respectively. Section 5 describes the experimental 

evaluation of our approach. Conclusions and an outlook are given 

in section 6. 

 

 

2. RELATED WORK 

Land cover classification implies the prediction of dense class 

labels for input images. There are quite a few CNN-based 

approaches to achieve this goal; a recent overview for remote 

sensing applications is given in (Zhu et al., 2017). One strategy 

is to apply networks which can directly deliver predictions at 

pixel level, e.g. FCN (Long et al., 2014) or encoder-decoder 

based networks (Noh et al., 2015). A FCN applies convolution 

and pooling operations to the input image, leading to a map of 

signals having lower spatial resolution. After that, the signal is 

up-sampled directly to the full resolution of the input to make 

class predictions. Encoder-decoder networks apply convolution 

and pooling operations in the same way as standard CNN in the 

encoder part. After that, upsampling is carried out in a decoder 

network that is structured symmetrically to the encoder in order 

to obtain predictions at the resolution of the input image. A 

similar strategy is pursued by SegNet (Badrinarayanan et al., 

2017) and U-Net (Ronneberger et al., 2015), applying end-to-end 

learning of all parameters, including those of the decoder part. 

Pooling operations do not only make the learned features 

invariant to image transformations, but they also enlarge the 

receptive field to incorporate more context information in an 

implicit way. However, they lead to a loss of spatial resolution 

and, consequently, to inaccurate object boundaries. To mitigate 

this problem, many authors use skip connections that directly 

connect feature maps of low levels to high levels in a network, 

e.g. (Long et al., 2014; Zhao et al., 2017; Lin et al., 2017a), 

typically inserting them just before the classification layer. 

Variants of such networks have been used for land cover 

classification, achieving promising results. Marmanis et al. 

(2018) extract edge maps from images by applying a Holistically-

Nested Edge Detection (HED) framework (Xie et al., 2017). The 

edge maps are concatenated with images as input for FCN and 

SegNet, and the outputs are combined for the final class 

prediction. Good results are achieved at the cost of many training 

stages and a huge number of parameters. Audebert et al. (2018) 

investigate SegNet and ResNet (He et el., 2016) and the 

integration of multispectral and height information in one model, 

and achieve promising results. Both methods just cited use skip 

connections by a simple elementwise addition of feature maps 

(Long et al., 2014), so that the combination of the features of 

different resolution cannot be learned. Learning feature 

combinations in skip connections was proposed by Maggiori et 

al. (2017). They concatenate feature maps of different resolutions 

and then convolve the concatenated maps with 1 x 1 filters, thus 

reducing the dimension of the feature maps. Volpi and Tuia 

(2018) proposed a network which adopts such learnable feature 

combinations and learns class boundaries explicitly, achieving 

accurate results. However, all methods cited so far only introduce 

skip connections before the classification layer. In a symmetric 

encoder-decoder structure, we can utilize the feature maps of the 

encoder part to enrich the representation in the decoder part. For 

instance, in U-Net, originally designed for biomedical 

applications (Ronneberger et al., 2015), the skip connections are 

introduced between the last convolutional layers in 

corresponding encoder and decoder convolution blocks symme-

trically, concatenating the feature maps for further processing. 

Here, we combine the ideas of Ronneberger et al. (2015) and 

Maggiori et al. (2017). We build a structure similar to U-Net, but 

concatenating the outputs of all convolutional layers at each 

resolution and using 1 x 1 convolutions to learn the combination 

of encoder and decoder features.  

 

Existing methods for land use classification differ by the data 

sources, the primitives to be classified, the features used for 

classification and the classifiers used to predict the class labels 

(Albert et al., 2017). Most approaches solve the problem in two 

steps: first, they determine land cover, and then they use land 

cover to support the land use classification (Hermosilla et al., 

2012). Typically, hand-crafted features derived from image data 

or land cover are applied in this context. Examples for features 

taking into account land cover are spatial and graph-based-

metrics. For instance, such features may quantify the spatial 

configuration of the land cover elements within a land use object, 

describing the size and shape of the land cover segments 

(Hermosilla et al., 2012). Other features are based on the 

frequency of local spatial arrangements of land cover elements 

within a land use object (Novack and Stilla, 2015), applying the 

adjacency-event matrix (Barnsley & Barr, 1996; Walde et al., 

2014). These features are then delivered to supervised classifiers 

such as Random Forests (Albert et al., 2017) or Support Vector 

Machines (SVM). Contextual models like Conditional Random 

Fields (CRF) have also been applied (Albert et al., 2017). In the 

context of CNN, the classification of land use objects from a 

geospatial database shares some resemblance to object detection. 

The main difference is that in object detection, interesting regions 

need to be determined automatically before presenting them to a 

CNN for classification (Ren et al., 2015). In our case, we know 

the locations and shapes of land use objects, yet their variations 

of shapes are very large. The first work classifying land use 

objects from a geospatial database by CNN is (Yang et al., 2018). 

They decompose large polygons into multiple patches suitable 

for being classified by a CNN. However, they used a pre-defined 

black image and only put the image data (RGB and land cover 

labels) into that image, which leads to a loss of context 

information. As pointed out earlier, the use of land cover label 

means that the uncertainty of the land cover, which may be very 

essential for the correct classification of polygons, is not 

considered. Building on (Yang et al., 2018), in this paper we 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-139-2019 | © Authors 2019. CC BY 4.0 License.

 
140



present an improved method that tackles these problems in the 

way already indicated in Section 1.  

 

 

3. CNN-BASED CLASSIFICATION OF LAND COVER 

Our CNN for land cover classification is based on SegNet 

(Badrinarayanan et al., 2017). Compared to FCN, SegNet 

delivers improved dense pixel predictions and requires lower 

computational costs (Audebert et al., 2018). Section 3.1 outlines 

our network, referred to as SkipNet. Section 3.2 presents some 

network variants.  

 

3.1 SkipNet 

Like SegNet, SkipNet (Fig. 1) applies a symmetric encoder-

decoder structure. The input size is 256 x 256 pixels with three 

bands. There are four blocks in the encoder part, each consisting 

of three convolutional layers followed by batch normalization 

(BN; Ioffe et al., 2015) and a rectified linear unit (ReLU) for non-

linearity. At the end of the block, there is a max-pooling layer. 

Symmetrically, the decoder part consists of four blocks, each 

starting with an upsampling layer that applies bilinear 

interpolation, followed by three convolutional layers, batch 

normalization and a ReLU unit. The filter size of each convo-

lution is 3 x 3. We expand this architecture by skip connections, 

using the mechanism shown in Fig. 2. Similar to U-Net, we first 

concatenate features from the encoder and the decoder parts, and 

then use learned 1 x 1 convolutions to obtain the combined 

feature map. Finally, to predict the class labels at the resolution 

of the input image, there is a 1 x 1 convolutional layer converting 

the output of the previous layer to a vector of 𝑀class scores for 

each of the 𝐻 × 𝑊 pixels of the input image. For each pixel i of 

the image to be classified, this results in a vector 𝒛𝑳𝑪
𝒊 =

(𝑧𝐿𝐶1
𝑖 , … , 𝑧𝐿𝐶𝑀

𝑖 )𝑇  of class scores, where ℂ𝐿𝐶 =  {𝐶𝐿𝐶1 , … , 𝐶𝐿𝐶𝑀} 

is the set of land cover classes and 𝑧𝐿𝐶𝑐
𝑖  is the class score for class 

𝐶𝐿𝐶𝑐. These class scores are normalised by a softmax function 

delivering the posterior probability 𝑃𝑖(𝐶𝐿𝐶𝑐|𝑥) for pixel i to take 

class label 𝐶𝐿𝐶𝑐 given the image data x: 
 

         𝑃𝑖(𝐶𝐿𝐶𝑐|𝑥) = softmax(𝒛𝑳𝑪
𝒊 , CLCc) =  

𝑒𝑥𝑝 (𝑧
𝐿𝐶𝑐
𝑖 )

∑ 𝑒𝑥𝑝 (𝑧
𝐿𝐶𝑙
𝑖 )𝑀

𝑙=1

.   (1) 

 

All parameters of convolutional layers are learned during in the 

training process, which is based on stochastic mini-batch gradient 

descent (SGD) using backpropagation for computing the 

gradients. We apply a variant of the focal loss (Lin et al., 2017b) 

as the objective function. As the original focal loss is designed 

for binary classification, we extend it to be suitable for multiclass 

problems, referring to it as the extended focal loss:  
 

𝐿 = −
1

𝑊∙𝐻∙𝑁
∑ [𝑦𝐿𝐶𝑐

𝑖𝑘 ∙ (1 − 𝑃𝑖(𝐶𝐿𝐶𝑐|𝑋𝑘))𝛾 ∙ 𝑙𝑜𝑔(𝑃𝑖(𝐶𝐿𝐶𝑐|𝑋𝑘))]𝑐,𝑖,𝑘  (2) 
 

where k is the index of an image, Xk is the kth image in the mini-

batch and N is the number of images in a mini-batch. The 

indicator variable 𝑦𝐿𝐶𝑐
𝑖𝑘  is 1 if the training label of pixel i in image 

k is identical to 𝐶𝐿𝐶𝑐 and 0 otherwise, and 𝛾 is hyper parameter 

(set to 1 in our experiments). The sum in (2) is taken over all 

potential class labels for all pixels of all images of a mini-batch. 

Compared to the standard cross-entropy loss function, we found 

this formulation of the loss not only to deliver better predictions 

but also to accelerate our training procedure. In the training 

procedure, we also applied weight decay with 0.0005, a step 

learning policy and used a mini-batch size of 4. The learning rate 

was set to 0.01 and decreased to 0.001 after 30 epochs in a total 

of 50 epochs training. 
 

 
Figure 1. The architecture of SkipNet.  

 

 

 

Figure 2. Structure of a skip connection. Colour code: cf. Fig. 1. 
 

 
 

Figure 3. Architecture of FuseEnc. Colour code: cf. Fig. 1. 

 

3.2 Network variants 

Based on SkipNet, we developed four additional variants of the 

network to incorporate different data sources into one model. The 

training procedures are identical to the one of SkipNet.  

 

First, variant NoSkip is similar to SkipNet but does not contain 

any skip connections. We use it to validate the effectiveness of 

skip connections. In order to validate the effect of the proposed 

learnable skip connections, we provide the variant AddSkip, 

which is identical to SkipNet except that it uses element-wise 

summation of features rather than the structure shown in Fig. 2 

for combining the features. 

 

In order to fuse different data sources, Sherrah (2016), Audebert 

et al. (2018) and Yang et al. (2018) apply separate network 

branches to extract features from different image sources and 

then fuse them by concatenation directly before the softmax 

layer. To set up a baseline of fusion, variant FuseDec applies 

fusion in a similar way, concatenating the feature vectors of the 

output of the convolutional layers from the last convolutional 

block and just adding a 1x1 convolution layer for fusion before 

the softmax layer. As FuseDec requires twice as many 

parameters as SkipNet and because we believe that the encoder 

already delivers high-level features encoding a good image 
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representation, we propose another network variant for fusion 

(Fig. 3). This variant, referred to as FuseEnc, fuses the features 

at the end of the encoder: two separate encoder branches are 

applied to extract features from different data sources and a 

united decoder is used to upsample the fused features. At each 

level of the decoder, skip connections from both encoder 

networks are combined with the decoder output, again using 1 x 

1 convolutions to reduce the dimension of the feature vectors.  

 

 

4. CNN-BASED CLASSIFICATION OF LAND USE  

The classification of land use is based on a CNN taking an image 

patch of 256 x 256 pixels and returning a land use label. As the 

CNN requires a fixed input size while the land use objects vary 

considerably in their extent, we start with patch preparation, 

which is described in Section 4.1. Section 4.2 outlines the basic 

CNN structure used for classification, while Section 4.3 presents 

network variants.  

 

4.1 Patch preparation  

We propose two different strategies for patch preparation. The 

first strategy, cropping, preserves the original image resolution, 

which implies that large polygons have to be split into smaller 

patches. The second strategy, rescaling, rescales the polygons so 

that they fit into the input window of the CNN. Both methods 

rely on the object boundary polygons from the geospatial 

database. The polygon shape is represented in the form of a 

binary object mask, where a value of 255 indicates that a pixel is 

inside the polygon, whereas pixels outside the polygon are set to 

0. 

 

4.1.1 Cropping: Using this strategy, we first check if the 

polygon fits into a window of 256 x 256 pixels at the resolution 

of the original data. If this is the case, we place such a window 

over the polygon so that the polygon centre coincides with the 

centre of the window (small polygon); for polygons that do not 

fit into a single patch, we split the window enclosing the polygon 

into a series of tiles of 256 x 256 pixels with an overlap of 50%. 

(large polygon) For each tile, we produce an input image having 

N = 4 + NC bands. The first three bands of that image correspond 

to the RGB data, the fourth band is the binary object mask and 

the remaining NC bands correspond to the pixel-wise class scores 

from land cover classification. The ground sampling distance 

(GSD) is identical to the one of the input image.  

 

For each tile, we also check the proportion of its area that is inside 

the database object. If this proportion is smaller than a threshold 

(set to 0.005% of the area of this tile), the tile will be excluded. 

As this still leads to a large number of tiles for large polygons, 

we reduce the computational burden, by randomly selecting 40% 

of the remaining tiles for further processing. Each selected tile 

results in a patch to be classified; the corresponding N-band 

image is produced by cropping the RGB image, the binary object 

mask and the class scores to the tile extents while preserving the 

original resolution. These images are referred to as Cr-N images. 

To compare results based on land cover class scores as opposed 

to land cover classes, we also generate images having five bands, 

i.e. the boundary mask, RGB and the land cover labels (Cr-5 

images). 

 

4.1.2 Rescaling: In the case of objects that have to be split in 

patches, cropping will lead to tiles in which the overall shape of 

the objects is not preserved well. Thus, we suggest this alternative 

option where we scale the images (RGB and pixel-wise class 

scores) and the binary object mask in each axis independently 

such that the fit into a window of 256 x 256 pixels, resulting in 

an input having N bands as well. The grey values of the images 

(RGB and pixel-wise class scores) are determined by bilinear 

interpolation, while for the object mask we use nearest 

neighbourhood interpolation. These images are named as Rs-N 

images. 

 

4.2 LuNet 

This network is based on LiteNet (Yang et al., 2018) and consists 

of four main convolutional blocks at the beginning and two 

branches towards the end (Fig. 4). Each of the main convolutional 

blocks consists of three convolution layers followed by BN and 

ReLU. Each block in the two branches starts with a convolution 

and a max-pooling layer, followed by a second convolutional 

layer with ReLU and a final average pooling layer. The filter 

sizes of all convolution layers are set to 3 x 3, while the number 

of filters in different blocks is shown in Fig. 4. At the end of the 

first three convolutional blocks there is a 2 x 2 max pooling layer 

with stride 2. The upper branch in Fig. 4 starts with a max pooling 

layer, the aim of which is to extract features that are 

representative for the entire input image. Due to the variations of 

the size and position of the polygons inside the images, we 

propose to use a second branch that just uses a region of interest 

(ROI) of the input image, i.e. a rectangle aligned with the image 

grid that tightly encloses the polygon, thus focussing on the most 

relevant regions in the image. As the size of the ROI varies, we 

resize the output of the last common convolutional block inside 

the ROI window to a fixed size of 16 x 16 by bilinear 

interpolation (Fig. 5). In each branch, an average pooling layer 

with a window of 8 x 8 is used to determine a 256 dimensional 

feature vector. Finally, the feature vectors of both branches are 

concatenated, and the combined feature vector forms the input to 

a final FC layer that delivers a vector of class scores 𝒛𝑳𝑼 =
( 𝑧𝐿𝑈1 , … , 𝑧𝐿𝑈𝑀)𝑇 , where ℂ𝐿𝑈 =  {𝐶𝐿𝑈1 , … , 𝐶𝐿𝑈𝑀}  is a set of 

land use classes and 𝑧𝐿𝑈𝑐 is the class score of an image in a mini-

batch X for class 𝐶𝐿𝑈𝑐 . To get a probabilistic class score, the 

softmax function (eq. 1) is applied to the class scores, thus 

𝑃(𝐶𝐿𝑈𝑐|X) = softmax(𝒛𝑳𝑼, 𝐶𝐿𝑈𝑐) . Training is based on mini-

batch SGD with weight decay 0.0005, and step learning policy; 

the function to be optimised is our extended focal loss:  
 

   𝐿 = −
1

𝑁
∙ ∑ [𝑦𝐿𝑈𝑐

𝑘 ∙ (1 − 𝑃(𝐶𝐿𝑈𝑐|𝑋𝑘))𝛾 ∙ 𝑙𝑜𝑔(𝑃(𝐶𝐿𝑈𝑐|𝑋𝑘))]𝑐,𝑘   (3) 

 

where 𝑋𝑘 is the kth  image in the mini-batch, N is the number of 

images in a mini-batch, and 𝑦𝐿𝑈𝑐
𝑘  is 1 if the training label of 𝑋𝑘 is 

𝐶𝐿𝑈𝑐 and 0 otherwise. We set the hyper-parameter 𝛾 equal to 1 in 

our experiments. We train all networks for four epochs, using a 

base learning rate of 0.001 and reducing it to 0.0001 after two 

epochs. The mini batch size depends on the network variant and 

will be given below. In the classification process, the CNN 

delivers a prediction for each patch. For polygons that had to be 

split into multiple tiles, we determine the product of the 

probabilistic class scores of all patches to obtain a combined 

score for the compound object.  

 

4.3 Network variants 

LuNet can be applied to different inputs, and the only adaptation 

is related to the number of input bands. The variant applied to Cr-

N images is referred to as LuNet-Cr-N, variant LuNet-Cr-5 uses 

Cr-5 images and LuNet-Rs-N is based on Rs-N images. We also 

test a variant that consists of an ensemble of LuNet-Cr-N and 

LuNet-Rs-N. In this variant, referred to as LuNet-ENS, LuNet-Cr-

N and LuNet-Rs-N are applied independently of each other. 

Subsequently, the probabilistic class scores are multiplied to 

obtain a final score for the land use label prediction per polygon. 
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The variant combines the advantages of both methods for genera-

ting the input, considering the entire shape via LuNet-Rs-N while 

being based on the original image resolution and considering land 

use information via LuNet-Cr-N. For training these variants, the 

mini-batch size in training is set to 12. Finally, to validate the 

effectiveness of the ROI location, we use variant LuNet-B that is 

based on LuNet-Cr-N but does not have the ROI branch (bottom 

branch in Fig. 4). For this variant, the mini-batch size is set to 16, 

due to its smaller amount of training parameters. 
 

 
Figure 4. Architecture of LuNet. 

 

 
Figure 5. ROI location (red rectangle) and feature extraction.  

 

 

5. EXPERIMENTS 

5.1 Test Data und Test Setup 

Our approaches for classification of land cover and land use are 

evaluated using two test sites located in the cities of Hameln and 

Schleswig (Germany), covering an area of 2 km x 6 km and 6 km 

x 6 km, respectively. For each test site, digital orthophotos 

(DOP), a DTM, a DSM derived by image matching and land use 

objects from the German Authoritative Real Estate Cadastre 

Information System (ALKIS) are available. The DOP are 

multispectral images (RGB + infrared / IR) with a GSD of 20 cm. 

We generated a normalised DSM (nDSM) by subtracting the 

DTM from DSM. We create both RGB and composite images 

(COM), the latter ones combining the red and IR band of the DOP 

with the nDSM to assess the impact of using different inputs for 

land cover classification.  

 

The references for land cover consist of 37 and 26 manually 

labelled image patches for Hameln and Schleswig, respectively, 

each covering 1000 x 1000 pixels (200 m x 200 m). For these 

datasets, we distinguish 8 land cover classes: building (build.), 

sealed area (seal.), bare soil (soil), grass, tree, water, car and 

others. The reference for land use was derived from the 

geospatial database. Following investigations by (Albert et al., 

2016), we distinguish 10 land use classes: residential (res.), non-

residential (non-res.), urban green (green), traffic (traf.), square, 

cropland (cropl.), grassland (grassl.), forest, water body (water) 

and others. To compare our method for land cover classification 

to other methods, we also apply it to the Vaihingen dataset of the 

ISPRS 2D semantic labelling challenge, consisting of 33 colour 

infrared (CIR) images with a GSD of 9 cm. Following the 

protocol of the benchmark, 16 images with known reference are 

used for training and the rest (17) for testing. Composite (COM) 

images are generated based on the nDSM provided by (Gerke, 

2015). There are six land cover classes: impervious surface (imp. 

surf.), building (build.), low vegetation (low veg.), tree, car and 

clutter (Wegner et al., 2017). Moreover, all mentioned networks 

are implemented based on the tensorflow framework (Abadi et 

al., 2015). We use a GPU (Nvidia TitanX, 12GB) to accelerate 

training and inference. 

 

5.1.1 Test setup for land cover classification (Hameln and 

Schleswig): In the tests involving these datasets, we split each 

image into four non-overlapping tiles of size 500 x 500 pixels, 

resulting in 148 and 104 tiles for Hameln and Schleswig, 

respectively. These tiles are randomly split into three groups of 

equal size for three-fold cross validation. Each tile is split into 

four overlapping patches corresponding to the input size of the 

CNN (256 x 256 pixels). In each test run, one group of tiles is 

used for testing and the others are used for training. In each test, 

a confusion matrix as well as derived metrics are determined by 

comparing the results to the reference. We report the average 

quality metrics over all test runs, focussing on the overall 

accuracy (OA) and the F1 score, i.e. the harmonic mean of 

completeness and correctness, all determined on a per-pixel level. 

In training, we applied data augmentation by flipping all training 

patches in horizontal and vertical directions and by applying 

rotations of 90°, 180° and 270° to all patches. We tested two 

variants of SkipNet that differed by their input: in SkipNet0, the 

input consists only of the RGB images, while in SkipNet1 we 

used the composite images (COM). Variants FuseEnc and 

FuseDec combine results for both input images (RGB + COM). 

In the inference procedure, the class labels for a patch of 256 x 

256 pixels are predicted six times for the original image and 

variants that are flipped and rotated just as the training images, 

multiplying the probabilistic scores to obtain a combined score 

for classification.  

 

5.1.2 Test setup for land cover classification (Vaihingen): 

Here, we extract windows of 256 x 256 pixels with an overlap of 

128 pixels in both spatial dimensions from the training images, 

which results in 4426 training patches. We apply the same 

experiments as for Hameln and Schleswig with the exception that 

for lack of a blue band in the DOP, we use CIR instead of RGB 

images. We use this dataset also to validate the impact of our 

learnable skip connections by applying NoSkip and AddSkip to 

CIR images (variants NoSkip0 and AddSkip0, respectively). 

There are two reference datasets: the full reference contains class 

labels for all pixels, while the eroded reference does not consider 

the pixels near object boundaries (eroded by a circular disc of 3-

pixel radius). Here, the quality measures (OA, F1 on a per-pixel 

level) are determined on the basis of the full reference to make 

them comparable to the evaluation results for Hameln and 

Schleswig, but also on the basis of the eroded reference for a 

comparison to the results of the ISPRS benchmark (Wegner et 

al., 2017).  

 

5.1.3 Test setup for land use classification: Each test data set 

is split into two blocks for cross validation The block size is 

10000 x 15000 pixels (6 km2) and 30000 x 15000 pixels (18 km2) 

for Hameln and Schleswig, respectively. In each test run, one 

block is used for training and the other one for testing. Totally, 

there are 3299 land use objects in Hameln and 4523 in Schleswig. 

When rescaling is applied for patch preparation, for each 

database object, the underlying image window is scaled to a size 

of 256 x 256 pixels and then augmented by horizontal and 

vertical flipping and by random rotations in steps of about 9°, 

which results in 141857 and 194489 patches in Hameln and 

Schleswig respectively. For patches generated by cropping, we 

differentiate two scenarios. Large polygons, i.e. polygons that 

had to be split because they do not fit into the input window of 
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the CNN, are augmented by horizontal and vertical flipping and 

by applying random rotations in intervals of 30°. For the other 

polygons (small polygons), we apply horizontal and vertical 

flipping and random rotations in intervals of 5°. After data 

augmentation, there are 289020 and 673215 patches in Hameln 

and Schleswig, respectively. As we have eight land cover classes, 

the Cr-N images have N = 12 bands. We compare the variants 

LuNet-B, LuNet-Cr-5, LuNet-Cr-N, LuNet-Rs-N and the 

ensemble LuNet-ENS, as described in section 4.3. For land use 

classification, the evaluation is based on the number of correctly 

classified database objects. Thus, we report OA and F1 scores on 

a per-object level.  

 

5.2 Evaluation of land cover classification 

5.2.1 Evaluation and comparison of network variants: Tab. 1 

presents the land cover classification results for all network 

variants described in section 5.1. In general, the classification 

works well, with an OA better than 84% and a mean F1 score 

better than 74% in all cases. All variants have difficulties with 

underrepresented or heterogeneous classes, in particular other 

(Hameln and Schleswig) and clutter (Vaihingen).  

 

Comparing the network variants that are based on the SkipNet 

architecture but use different inputs (SkipNet0 and SkipNet1), we 

observe an advantage of using the IR and nDSM data (SkipNet1) 

compared to using RGB data (SkipNet0), with an improvement 

of OA between 0.9% (Vaihingen) and 3.0% (Hameln). For 

Hameln, the F1 scores of all classes increase, leading to an 

improvement of the average score of +3.3%. In the other areas, 

there are also improvements in the F1 scores of most classes. This 

meets our expectation that IR and height help to recognize 

vegetation and classes sensitive to height (e.g. building). How-

ever, the improvement of the average F1 score is only small in 

Schleswig, and it is lower than the one of SkipNet0 in Vaihingen. 

This is due to a large drop of F1 for classes having relatively few 

samples (car; other / clutter). In particular, for moving cars, 

height information could be expected not to improve classifi-

cation accuracy; it would seem that this also applies to the 

heterogeneous classes other / clutter. 

 

The network variants fusing RGB, IR and height data (FuseDec, 

FuseEnc) could be expected to deliver better results than the 

variants based on a single data source. Tab. 1 shows that this is 

indeed the case for Schleswig and Vaihingen, where the OA and 

most F1 scores of both fusion methods are higher than those 

achieved by SkipNet1. For Schleswig, the improvement of OA 

and the average F1 score is in the order of 1.5-3.0%, for 

Vaihingen it is somewhat smaller. However, for Hameln, the best 

result both in terms of OA and F1 is achieved by a network just 

using the COM images (SkipNet1), only by small margin in OA 

(0.5%) but by a larger one in F1 (1.4% compared to FuseEnc). 

For Hameln, the additional use of RGB data does not improve the 

classification quality except for a few classes (water, car). The 

reasons are unknown; they might be related to alignment 

problems between DSM and DOP or to data acquisition under 

leaf-off conditions. Comparing the two fusion frameworks, 

FuseEnc, which has about 27% fewer learnable parameters, 

yields slightly better results than the naïve approach of FuseDec, 

with improvements in OA of 0.3% (Hameln and Schleswig) to 

0.4% (Vaihingen). In general, the F1 scores are also better, the 

largest exception being F1 for car in Schleswig, which also leads 

to a slight decrease of the average F1 score for this dataset. 

Nevertheless, we think that these results show the advantages of 

sharing the encoder part of the network in the fusion process.  

 

Tab. 1 indicates that there is no clear test winner among the 

compared methods. In all cases, the best methods use IR and 

height data. For two datasets, the additional use of RGB data 

improves the OA, while it decreases OA by a small margin for 

the third dataset. It would seem that in most cases the fusion 

framework of FuseEnc is a reasonable choice. Finally, we used 

the pixel-based class scores of FuseEnc as input for the land use 

classification both for Hameln and Schleswig. 

 

5.2.2 Effectiveness of skip connections: Tab. 2 shows the 

evaluation results achieved for the variants NoSkip0 and 

AddSkip0 on the Vaihingen dataset. The results show that 

NoSkip0 performs worse (-3% in OA) than AddSkip0, which 

shows the importance of using skip connections. A comparison 

of the results of AddSkip0 to those of SkipNet0 (based on the same 

input) in Tab. 1 reveals the advantage of using a learnable skip 

connection. SkipNet0 delivers slightly better results in almost all 

indices, with an improvement of 0.3% in OA.  
 

Network F1 [%] OA  
[%] imp. surf. build. low. veg. tree Car 

NoSkip0 84.8 88.6 75.6 83.2 73.2 83.0 

AddSkip0 88.1 91.2 79.7 85.4 73.5 86.0 
 

Table 2. Results of land cover classification using different  

 network variants for Vaihingen (full reference). 

 

5.2.3 Comparison to the state-of-art: For Vaihingen, we 

compare our results to those achieved by state-of-art methods. 

Test site 

 

Network Input F1 [%] avg. 

F1 
[%] 

OA  

[%] build. seal. soil grass tree water car others 

 

Hameln 

SkipNet0 RGB 91.2 83.9 82.5 85.9 87.3 90.9 75.7 41.7 79.9 86.6 

SkipNet1 COM 94.6 87.9 85.1 88.8 89.5 93.3 76.6 49.8 83.2 89.6 

FuseDec RGB + COM 93.4 86.7 81.9 87.5 88.0 93.3 76.8 43.7 81.4 88.2 

FuseEnc RGB + COM 94.4 87.9 84.0 88.0 88.7 94.7 76.2 40.9 81.8 89.1 

 

Schleswig 

SkipNet0 RGB 87.9 80.2 76.0 78.7 90.5 89.3 69.7 40.4 76.6 84.0 

SkipNet1 COM 91.4 83.1 82.0 83.2 90.8 87.3 60.7 36.4 76.9 86.5 

FuseDec RGB + COM 91.7 84.5 81.6 83.5 90.9 89.4 72.3 43.1 79.6 87.0 

FuseEnc RGB + COM 92.4 84.8 80.7 83.7 91.1 90.4 68.6 42.4 79.3 87.3 

 imp. surf. build. low. veg. tree car clutter   

 
Vaihingen 

SkipNet0 CIR 88.5 91.8 79.2 85.8 77.5 25.0 74.6 86.3 

SkipNet1 COM 88.9 93.2 80.5 86.7 75.7 16.4 73.6 87.2 

FuseDec CIR + COM 89.2 93.4 80.9 86.9 79.0 16.4 74.3 87.5 

FuseEnc CIR + COM 89.4 93.8 81.7 87.1 79.3 20.5 75.3 87.9 

FuseEnc* CIR + COM 92.0 95.5 85.2 90.2 86.2 22.1 78.5 90.7 
 

Table 1. Results of land cover classification of all networks. COM: composite images, F1: F1 score, OA: Overall Accuracy,  

both evaluated on the basis of pixels. Best scores are printed in bold font. In Vaihingen, FuseEnc* is evaluated on the 

eroded reference, other variants are evaluated on the full reference. 
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Following the convention of the ISPRS benchmark, the eroded 

reference is used for evaluation. The benchmark website 

(Wegner et al., 2017) only lists four (out of more than 100) 

contributions that deliver an OA that is better than the one of our 

method FuseEnc. The OA of FuseEnc (90.7% in Table 1) is only 

0.9% worse than the best one (HUSTW5; OA = 91.6%); the other 

methods having a better OA are NLPR3 (91.2%), CASIA2 

(91.1%) and BKHN10 (91.0%). We take this as an indication that 

our method is on par with the current state of the art.  

 

5.3 Evaluation of land use classification 

5.3.1 Evaluation and comparison of network variants: Tab. 3 

presents the results of the land use classification for different 

networks in the two test sites. Again, the accuracy values are 

satisfactory, though they are at a lower level than those achieved 

in land cover classification. Comparing the two variants of patch 

preparation (LuNet-Cr-N and LuNet-Rs-N) shows a clear 

advantage of the variant based on cropping (LuNet-Cr-N), in 

particular when considering the F1 scores (+9.5%). For 

Schleswig, the difference is not as pronounced, with the OA 

being almost identical and an improvement of the average F1 

score of 1.3%. Again, underrepresented classes, in particular 

grassland (less than 1% of the samples in Hameln), are most 

problematic. The ensemble method (LuNet-ENS) outperforms 

both variants relying on a single patch generation strategy in 

terms of the OA. For Hameln, the improvement over LuNet-Cr-

N is relatively small (0.4% in OA), and it is contrasted by a drop 

of mean F1 mainly due to problems in discriminating the 

underrepresented classes grassland and water body. For 

Schleswig, there is a larger improvement of 3.5% in OA and an 

improvement of about 4% in mean F1. It would seem that in 

Hameln, using the results of the network based on rescaled 

patches does not lead to a better representation of the objects. 

Perhaps this is due to the fact that, rescaling leads to a loss of 

information about object dimensions. On the other hand, the 

results of Schleswig show that there are situations in which the 

two representations convey complementary information to the 

classifier. While the large differences in the performance for 

specific classes requires additional investigations, we think that 

our results show that the ensemble method can give good results 

with an accuracy in the order of 80% under different 

circumstances. 

 

5.3.2 Land cover labels vs. land cover scores: we compared the 

performance achieved when using land cover labels to the one 

achieved using land cover posteriors as input. The results are 

presented in Tab. 4 (LuNet-Cr-N and LuNet-Cr-5). To be able to 

assess the impact of the input to the network directly, these results 

are based on the classification results of patches (not objects). In 

Hameln, using land cover posteriors instead of label images 

improves the OA and average F1 score by 1.3% and 2.4%, 

respectively. Although in Schleswig LuNet-Cr-5 is slightly better 

than LuNet-Cr-N, the differences are very small (0.1% in OA and 

0.3% in F1). The comparison remains inconclusive, but on 

average there seems to be a slightly positive contribution of using 

class scores.  

 

5.3.3 Effectiveness of ROI location: Tab. 4 also shows the 

results of variant LuNet-B, which does not consider the branch 

for ROI location in LuNet. Both the OA and the average F1 score 

are lower than those achieved by the other methods (LuNet-Cr-N 

and LuNet-Cr-5). The improvement can be up to 4% in OA 

(Schleswig) but is also noticeable in Hameln. We take this as an 

indication that the ROI location branch in LuNet has a positive 

impact on the accuracy of land use classification. 
 

Test site Network avg. F1 [%] OA [%] 

Hameln LuNet-Cr-N 69.6 80.6 

LuNet-Cr-5 67.2 79.3 

LuNet-B 68.5 80.5 

Schleswig LuNet-Cr-N 53.8 75.9 

LuNet-Cr-5 54.1 76.0 

LuNet-B 51.0 71.8 
 

Table 4. Results of LuNet-Cr-N, LuNet-Cr-5 and LuNet-B based 

on patches. Number of patches used for evaluation: 

289020 (Hameln) / 673215 (Schleswig).  

 

5.3.4 Influence of object size: Tab. 5 shows the OA achieved by 

LuNet-ENS for three different sets of land use objects. The set 

small consists of all objects represented by a single patch in the 

classification process, whereas the set large consists of all objects 

that were split in the patch generation phase. The table also 

contains the combined results (all), identical to those shown in 

Tab. 3. Tab. 5 shows that the OA of large objects is considerably 

better than the one for small objects. In Schleswig the difference 

is larger than in Hameln, which may be attributed to the low 

amount of training samples from the small set after data 

augmentation (21% of the samples compared to 36% in Hameln). 

We take this analysis as an indication that work on a better 

classification of small objects is still required.  
 

object 

set 

Hameln Schleswig 

#objects OA [%] #objects OA [%] 

large 1812 84.9 3029 84.5 

small 1487 77.9 1494 64.7 

all 3299 81.7 4523 78.0 
 

Table 5. OA for three different sets of objects based on LuNet-

ENS in Hameln and Schleswig. 

 

 

6. CONCLUSION 

In this paper, we have proposed networks for land cover 

classification. We investigated the performance of the improved 

networks on RGB images and IR and height data, showing that 

IR and height data lead to much better results. These data allow 

for a better discrimination of vegetation and objects sensitive to 

height. We also proposed two fusion networks and found the 

fusion at the end of the encoder performs better than the fusion at 

Network 

variant 

F1 [%] avg. 

F1[%] 

OA  

[%] res. non-res. green traf. square cropl. grassl. forest water others 

Hameln: 

LuNet-Cr-N 83.7 74.4 74.8 92.4 51.6 81.2 55.5 75.9 68.5 56.4 71.4 81.3 

LuNet-Rs-N 79.8 73.7 70.7 90.4 61.2 69.4 0.00 72.2 48.0 52.4 61.9 77.6 

LuNet-ENS 82.9 75.8 75.9 93.1 61.3 77.5 36.5 80.0 57.0 58.9 70.0 81.7 

Schleswig: 

LuNet-Cr-N 81.0 55.6 57.4 87.7 18.0 87.7 39.9 83.0 62.5 36.4 60.9 74.5 

LuNet-Rs-N 83.0 56.8 55.9 86.6 20.8 85.7 36.1 77.8 59.6 33.8 59.6 74.5 

LuNet-ENS 84.4 60.1 62.6 89.8 25.6 88.7 39.6 84.7 69.3 41.5 64.6 78.0 
 

Table 3. Results of land use classification. Network variant: cf. section 5.1.3. F1: F1 score, OA: Overall Accuracy, both  

 evaluated on the basis of objects. Best scores are printed in bold font. 
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the end of the decoder while requiring fewer parameters. 

Compared to the CRF-based results of Albert et al. (2017), the 

OA is improved by 5.9% and 4.8% in Hameln and in Schleswig, 

respectively. However, the delineation of object boundaries is 

still not precise, which is a future focus of research.  

 

We have also proposed improved methods for the classification 

of land use objects based on CNN, by introducing a two-branch 

network: one branch focusses on the entire image to extract a 

global representation and the other one on a smaller relevant area 

(ROI). The results are very promising, in particular for large 

objects. We have shown that integrating the information about 

object shapes by combining two different pre-processing 

strategies improves land use classification further. Compared to 

(Albert et al., 2017), the OA is improved by 3.3% and 5.9% in 

Hameln and Schleswig, respectively. Our future work will focus 

on improving the classification of small polygons. 
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