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Abstract

A method for the classification of land cover in urban ar-
eas by the fusion of first and last pulse LIDAR data and
multi-spectral images is presented. Apart from buildings,
the classes “tree”, “grass land”, and “bare soil” are also
distinguished by a classification method based on the theory
of Dempster - Shafer for data fusion. Examples are given for
a test site in Germany.

1. Introduction

The high potential of LIDAR (LIght Detection And
Ranging) data for the automatic generation of 3D city mod-
els has been shown in the past [6]. LIDAR delivers a digital
surface model (DSM), i.e. a model of the earth as seen from
the sensor’s vantage point, including objects on the ter-
rain. The first step of building extraction from LIDAR data
is to separate terrain points from non-terrain points thus cre-
ating a digital terrain model (DTM), a model of the terrain
only. Points on buildings are then separated from points on
trees by evaluating the surface roughness [6], [9]. With de-
creasing resolution of the LIDAR data, the classifica-
tion becomes more difficult in areas where the appearance
of trees and buildings is similar. The height differences be-
tween the first and the last echoes of the laser pulse and
multispectral images can be used to improve the classifica-
tion results.

In [1], the classification of a LIDAR DSM is accom-
plished by a hierarchic framework for combining various
cues derived from DSM in a Bayesian network. How-
ever, estimating the conditional probabilities required for
the Bayesian network is very complex. In [3] a normalised
DSM created by morphologic filtering is used as an addi-
tional band along with colour infrared (CIR) imagery in an
unsupervised classification algorithm. The clusters in fea-

ture space are assigned to thematic classes interactively, so
that the interpretation itself is not automated.

It is the goal of this paper to give a contribution to the
fusion of first and last pulse LIDAR data and multi-spectral
images for an improved classification of land cover in ur-
ban areas, with an emphasis on the detection of buildings.
This is accomplished by a method applying the theory of
Dempster-Shafer for data fusion [8], [4]. Examples are pre-
sented for a test site in Memmingen (Germany).

2. Method Overview

The input to our method is given by three data sets:
(1) The last pulse DSM is sampled into a regular grid by
linear prediction with a low degree of filtering [6]. (2) The
first pulse DSM is also sampled into a regular grid, and by
computing the height differences between these DSMs, we
get a model of the height differences between the first and
the last pulses ∆HFL. (3) The normalised difference veg-
etation index (NDVI) is computed from the near infrared
and the red bands of a geocoded multi-spectral image [5].
The work flow for building detection consists of two stages.
First, a coarse DTM is generated. Along with cues derived
from the other input data, the DTM provides one of the in-
puts for the second stage, the classification of these data by
Dempster-Shafer fusion and the detection of buildings.

DTM generation: We use a hierarchic method for DTM
generation that is based on morphological grey scale open-
ing using structural elements of different sizes. After mor-
phological opening, a rule-based classification algorithm is
used to detect large buildings. In the next iteration, mor-
phological opening is applied using a smaller structural el-
ement, but in the building regions already detected, the
DTM heights of the previous iteration are substituted for
the results of morphological filtering. The process is fin-
ished as soon as the minimum size for the structural ele-
ment is reached. This method is described in detail in [7].
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Building Detection Using Dempster-Shafer Fusion:
There are altogether five data sets that contribute to a
Dempster-Shafer fusion process carried out for each pixel
of the image containing the classification results indepen-
dently: the height differences ∆H between the DSM and
the DTM, ∆HFL, the NDVI, and two surface roughness pa-
rameters. Each pixel is assigned to one of four classes,
namely building, tree, grass land, and bare soil. In the sub-
sequent steps, the binary image of the pixels classified
as buildings is used. Morphologic filtering helps to elim-
inate single building pixels and oddly shaped areas of
building pixels. After that, initial building regions are in-
stantiated as connected components of building pixels. The
average NDVI, the average height differences, and two sur-
face roughness parameters are computed for each of
the building regions. These attributes are used in a sec-
ond fusion process to eliminate regions still corresponding
to trees. Building detection using Dempster-Shafer fu-
sion is described in section 3.

3. Data Fusion for Building Detection

We start with an outline of Dempster-Shafer fusion based
on [4] and [5]. We consider a classification problem where
the input data are to be classified into n mutually exclu-
sive classes Cj ∈ Θ. The power set of Θ is denoted by 2Θ.
It contains both the original classes Cj and all their possi-
ble unions (hence called combined classes). A probability
mass m(A) is assigned to every class A ∈ 2Θ by a “sensor”
(a classification cue) such that m(∅) = 0, 0 ≤ m(A) ≤ 1,
and

∑
A∈2Θ m(A) = 1, where ∅ denotes the empty set. Im-

precision of knowledge can be handled by assigning a non-
zero probability mass to the union of two or more classes
Cj . The support Sup(A) of a class A ∈ 2Θ is the sum of all
masses assigned to A:

Sup(A) =
∑

B⊆A

m(B) (1)

Sup(Ā) is the support for the complementary hypothesis of
A: A ∪ Ā = Θ. Sup(Ā) represents the degree to which
the evidence contradicts a proposition, and it is called du-
biety. If p sensors are available, probability masses mi(Bj)
have to be defined for all these sensors i with 1 ≤ i ≤ p and
Bj ∈ 2Θ. The Dempster-Shafer theory allows the combina-
tion of the probability masses from several sensors to com-
pute a combined probability mass for each class A ∈ 2Θ:

m(A) =

∑
B1∩B2...∩Bp=A [

∏
1≤i≤p mi(Bj)]

1 − ∑
B1∩B2...∩Bp=∅ [

∏
1≤i≤p mi(Bj)]

(2)

As soon as the combined probability masses m(A) have
been computed from the original ones, both Sup(A) and
Sup(Ā) can be computed. The accepted hypothesis Ca ∈ Θ
is determined as the class obtaining maximum support.

3.1. Initial Land Cover Classification

In this process, we want to achieve a per-pixel classifi-
cation of the input data into one of four classes: buildings
(B), trees (T ), grass land (G), and bare soil (S). Five cues
derived from the input data are used for this purpose:

(1) The height differences ∆H between the DSM and
the DTM distinguish elevated objects, i.e. trees and build-
ings, from other objects. We assign a probability mass
P∆H = P∆H(∆H) ascending with ∆H to the combined
class B ∪ T , and (1 − P∆H) to G ∪ S.

(2) The height differences ∆HFL between the first and
the last pulse DSMs are large in areas covered by trees. We
assign a probability mass PFL = PFL(∆HFL) ascending
with ∆HFL to class T , and (1 − PFL) to B ∪ G ∪ S. By
doing so we neglect that large values of ∆HFL might also
occur at the borders of buildings and at power lines.

(3) The NDVI is an indicator for vegetation, thus for
the occurrence of classes T and G. We assign a probabil-
ity mass PN = PN (NDV I) ascending with NDV I to the
combined class T ∪ G, and (1 − PN ) to B ∪ S.

(4) The strength R of surface roughness, i.e. the texture
strength of polymorphic feature extraction [2] applied to the
first derivatives of the DSM, is large in areas of great vari-
ations of the surface normal vectors, which is typical for
trees. We assign a probability mass PR = PR(R) ascend-
ing with R to class T , and (1 − PR) to B ∪ G ∪ S. We
neglect that large values of R might also occur at the bor-
ders of buildings and at step edges of the terrain.

(5) The directedness D of surface roughness, i.e. the tex-
ture directedness of polymorphic feature extraction [2] ap-
plied to the first derivatives of the DSM, is large in areas
of great, but isotropic local variations of the surface nor-
mal vectors. Again, this is an indicator for trees, but only if
R is above a certain threshold; otherwise, D is dominated
by noise. We assign a probability mass PD = PD(R, D) as-
cending with D to class T , and (1 − PD) to B ∪ G ∪ S.

The probability masses P∆H , PR, PFL, and PN are as-
sumed to be equal to a constant P1 for input parameters
x < x1. For input parameters x > x2, they are assumed to
be equal to another constant P2, with 0 ≤ P1 < P2 ≤ 1.
Between x1 and x2, the probability mass is described by a
cubic parabola using x̄ = x−x1

x2−x1
and i ∈ {∆H, R, FL, N}:

Pi(x̄) = P1 + (P2 − P1) ·
(
3 · x̄2 − 2 · x̄3

)
(3)

P1 and P2 are chosen to be 1% and 99%, respectively. Fur-
ther, we choose (x1, x2) = (1.5 m, 3.0 m) for ∆H and
∆HFL and (x1, x2) = (46%, 66%) for the NDVI. With re-
spect to PR, (x1, x2) are linked to the median of R to make
the definition of PR adaptive to the slope variations in a
scene. The probability mass PD is assumed to be PD =
P1 = 1% if (D < Dmin)∨ (R < Rmin) and PD = D oth-
erwise, with Dmin = 0.5 and Rmin = 5 · median(R).
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The combined probabilities are computed for each pixel
independently using equation 2, and the pixel is assigned
to the class of maximum support. Compared to the method
described in [6], there are several improvements. Firstly, all
cues are evaluated simultaneously, thus, we do not eliminate
one part of the data prior to the others being used for clas-
sification. Instead we get an overall classification of land
cover with respect to our four classes. Secondly, no sharp
thresholds are required, but the probability mass functions
have a smooth transition between the levels P1 and P2.

3.2. Final Classification of Building Regions

After the initial classification, we obtain a binary im-
age of pixels classified as “building”. As all pixels were
classified independently, only a small local neighbourhood
contributed to the classification (via R and D). This intro-
duces classification errors such as the appearance of singu-
lar “building” pixels inside larger areas of other classifica-
tion or “tree” pixels inside building roofs. In order to elimi-
nate singular building pixels, we use morphologic opening.

A building label image is then created by a connected
component analysis. The individual building regions thus
detected are classified based on the Dempster-Shafer theory
using four cues representing average values for each build-
ing region. The first two cues, i.e. the average height differ-
ences ∆Ha between the DSM and the DTM and the aver-
age NDVI (NDV Ia), are used in the same way as ∆H and
NDV I in the initinal classification. Thirdly, the percent-
age H of pixels classified as “homogeneous” in polymor-
phic feature extraction [2] is an indicator for an object con-
sisting of smooth surface patches. Thus, we assign a proba-
bility mass PH = PH(H) to classB∪G∪S, and (1−PH) to
T . Finally, the percentage P of pixels classified as “point-
like” in polymorphic feature extraction is an indicator for
trees. We assign a probability mass PP = PP (P ) to class
T , and (1 − PP ) to B ∪ G ∪ S.

For the probability masses P∆Ha , PH , PP , and PNa we
use the same function as for P∆H (section 3.1). Again, we
choose P1 = 1% and P2 = 99%, further (x1, x2) = (1.5 m,
3.0 m) for ∆Ha, (x1, x2) = (46%, 66%) for NDV Ia,
(x1, x2) = (0%, 50%) for H , and (x1, x2) = (40%, 75%)
for P . The combined probability masses are evaluated for
each initial building region, and if such a region is assigned
to another class than “building”, it is eliminated. Finally,
the building regions are slightly grown to correct for build-
ing boundaries erroneously classified as trees.

4. Experiments

The test data set was captured over Memmingen (Ger-
many) by TopoSys. An area of 2 × 2 km2 was processed.
Both the first and the last pulses were recorded. The aver-

age LIDAR point distance was about 1.2 m (cross-flight) by
0.20 m (in-flight), from which we derived DSM grids at a
resolution of 0.75 m. A geocoded false-colour infrared im-
age with a resolution of 0.5 m was also available. We com-
puted the NDVI from the infrared and the red bands of that
image, respectively (figure 1).

Figure 1. DSM (left) and NDVI (right).

Figure 2. Initial Dempster-Shafer classifica-
tion. White: grass-land, light grey: bare soil,
dark grey: trees, black: buildings.

The results of Dempster-Shafer classification are pre-
sented in figure 2. Class “bare soil” mainly corresponds to
streets, parking lots, railway tracks, sporting facilities, and
fallow fields. Most of the trees are situated in the forests
close to the centre and the south-western corner of the
scene, along the streets, and in the backyards of the resi-
dential houses. The building borders are often classified as
trees. There were problems separating buildings from trees
in regions of shadow because in very dark areas the NDVI
could not be determined with sufficient an accuracy. This
was the reason why one large industrial building could not
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be detected. Further problems occurred in areas of bridges.
Morphologic filtering produces a DTM corresponding to
the terrain below the bridge. The subsequent height differ-
ences ∆H indicate buildings or trees, whereas the surface
roughness of the street and the NDVI indicate an area not
covered by vegetation. The bare top of a small hill in the
centre of the scene was erroneously classified as a building
because it was cut off in a very early iteration of DTM gen-
eration. Both the surface roughness and the NDVI correctly
suggested that the area was not covered by trees. There are
also some single misclassified pixels of a class in the in-
side of larger areas of another class, because context was
not considered in the classification process.

Figure 3. The final building label image.

After morphological opening and eliminating building
candidate regions smaller than 30 m2, the second Dempster-
Shafer classification is carried out for 966 building candi-
date regions. Of these regions, 26 are classified as belonging
to another class, so that altogether 940 building regions are
detected. Figure 3 shows the final building label image af-
ter growing the building regions by morphologic closing. As
no ground truth data are available for the test site, no com-
parison of these results to such data could be carried out.
A coarse visual inspection revealed that only a few build-
ings (about 3%) were missed by the classification. These
were small residential buildings with roofs consisting of
very small planar faces or covering too small an area to be
detected given the resolution of the LIDAR data. One large
industrial building with many shadow areas on top of its
roof was also missed. The percentage of false alarms seems
to be in the same range as the rate of missed buildings, but
no precise numbers can be given at this time. Problem areas
are bridges, for reasons already described above, large over-
seas containers in the industrial areas, shadows, and small

terrain structures not covered by vegetation.

5. Conclusion and Future Work

We have presented a method for building detec-
tion from LIDAR data and multi-spectral images, and
we have shown its applicability in a test site of heteroge-
neous building shapes. The method is based on the appli-
cation of the Dempster-Shafer theory for data fusion. The
results achieved were satisfactory, although a more thor-
ough evaluation including ground truth data to give precise
detection rates still has to be done. In some cases, build-
ings and trees cannot be accurately separated, either be-
cause of shadows or because the resolution of the LIDAR
data is not sufficient. Better results might be achiev-
able with different definitions of the probability masses in
the second classification step. We also want to use the re-
sults of our method to improve the quality of the DTM by
eliminating points on the building roofs before applying ro-
bust linear prediction as described in [6].
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