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ABSTRACT: 
 
Land cover and land use exhibit strong contextual dependencies. We propose a novel approach for the simultaneous classification of 
land cover and land use, where semantic and spatial context is considered. The image sites for land cover and land use classification 
form a hierarchy consisting of two layers: a land cover layer and a land use layer. We apply Conditional Random Fields (CRF) at 
both layers. The layers differ with respect to the image entities corresponding to the nodes, the employed features and the classes to 
be distinguished. In the land cover layer, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from 
a geospatial database. Both CRFs model spatial dependencies between neighbouring image sites. The complex semantic relations 
between land cover and land use are integrated in the classification process by using contextual features. We propose a new iterative 
inference procedure for the simultaneous classification of land cover and land use, in which the two classification tasks mutually 
influence each other. This helps to improve the classification accuracy for certain classes. The main idea of this approach is that 
semantic context helps to refine the class predictions, which, in turn, leads to more expressive context information. Thus, potentially 
wrong decisions can be reversed at later stages. The approach is designed for input data based on aerial images. Experiments are 
carried out on a test site to evaluate the performance of the proposed method. We show the effectiveness of the iterative inference 
procedure and demonstrate that a smaller size of the super-pixels has a positive influence on the classification result.  
 
 

1. INTRODUCTION 

1.1 Motivation 

Land cover and land use classification are standard tasks in 
remote sensing that pursue different objectives. Land cover 
classification focuses on the assignment of land cover labels to 
(often relatively small) image sites. Land use reveals the socio-
economic function of a piece of land, which is typically 
composed of different land cover elements. The goal of land use 
classification is to assign a land use label to such pieces of land. 
In contrast to land cover, land use cannot be derived directly 
from remote sensing data. Besides spectral characteristics, the 
composition of different land cover elements within a land use 
object is important to infer its socio-economic function. For 
instance, residential land use is typically composed of the land 
cover elements building, sealed area and grass or trees. Land 
use classification forms the basis for the verification and update 
of geospatial land use databases (e.g. Helmholz et al., 2014).  
 
As there is a semantic dependency between land cover and land 
use, it is reasonable to consider land cover information in the 
classification of land use. This can be done using a procedure 
consisting of a sequence of two classification tasks (e.g. Albert 
et al., 2014a). In a first step, land cover information is derived 
by a classification of remote sensing data. The second step 
consists of a land use classification, often segment-based, in 
which some of the features are derived from the results of the 
first step. In such a two-step approach semantic relations 
describing the statistical dependencies between land cover and 
land use are indirectly introduced to the second classification 
via additional features derived from the results of the first step. 

This strategy for considering contextual information is widely 
used for land use classification. It is the main drawback of this 
approach that wrong decisions taken during land cover 
classification cannot be reversed at later stages. Land cover 
information directly affects the classification of land use. Thus, 
wrong decisions taken during land cover classification can 
easily lead to misclassifications of land use.  
 
Land cover and land use classification exhibit strong contextual 
dependencies, where context incorporates semantic as well as 
spatial dependencies between neighbouring sites of land cover 
and land use classification. In both cases, some classes are more 
likely to occur next to each other than others. Land use classes 
typically occur in certain spatial configurations, for instance a 
residential area is usually located close to the land use street. 
On the other hand, neighbouring land cover sites are likely to 
belong to the same class, especially if they are small. 
 
In this paper, we present an approach for simultaneous 
classification of land cover and land use that considers semantic 
as well as spatial context. Land cover classification is carried 
out at the level of super-pixels, i.e. small sets of pixels having 
similar characteristics. The classification of land use is applied 
to objects from a geospatial database, where the geometry of the 
objects is given and assumed to be correct. The rationale for this 
assumption is that our approach is the first step of a scheme for 
updating the given database. The image sites for land cover and 
land use classification form a hierarchy consisting of two 
layers: a land cover layer and a land use layer. The land use 
objects describe the real world at a coarse scale, whereas the 
land cover super-pixels provide a description at a fine scale.   
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We use Conditional Random Fields (CRF) (Kumar & Hebert, 
2006) to model the spatial dependencies within each layer. CRF 
provide a flexible framework for contextual classification. Both 
layers consist of nodes and edges; they differ with respect to the 
entities corresponding to the nodes, the employed features and 
the classes to be distinguished. Both CRFs model spatial 
dependencies between neighbouring sites, i.e. super-pixels in 
the case of land cover and land use objects in the case of land 
use classification. Similar to the two-step approach outlined 
before, we integrate contextual relations between land cover 
and land use in the classification process by using contextual 
features. However, rather than using a two-step procedure, we 
propose an iterative inference procedure for the simultaneous 
classification of land cover and land use. During the iterative 
algorithm, the two classification tasks mutually influence each 
other, which helps to improve the classification accuracy for 
certain classes. The approach is designed for input data based 
on aerial images. Experiments are carried out on a test site and 
are used to evaluate the performance of the proposed method. 
The goal is to show the effectiveness of the iterative inference 
procedure and to investigate the influence of the size of the 
super-pixels on the classification result.  
 
This paper is structured as follows. Section 1.2 focuses on 
related work and section 1.3 highlights the contributions of our 
approach. The methodology is presented in section 2, whereas 
section 3 describes the experimental evaluation of our approach. 
Finally, conclusions and an outlook are given in section 4.  
 
1.2 Related Work 

There are several approaches for land use classification. They 
differ with respect to general processing strategy, the extracted 
features, the classifiers applied and the input data. Some of the 
approaches apply a two-step processing strategy (Hermosilla et 
al., 2012; Helmholz et al., 2014). First, a pixel- or segment-
based land cover classification is performed. In a second step, 
the classification results are transferred to the land use objects 
of a geospatial database. We have presented a two-step land use 
classification approach using CRF in (Albert et al., 2014a). CRF 
are applied for land cover as well as land use classification, 
separately. Both CRFs model spatial dependencies between 
neighbouring sites, namely pixels in the case of land cover and 
segments in the case of land use classification. The benefit of 
considering contextual knowledge in the classification process 
has already been identified. For instance, for the classification 
of urban structure types, Hermosilla et al. (2012) incorporate 
contextual features in land use classification, which describe the 
relations of land cover areas within a land use object as well as 
relations between neighbouring land use objects. Contextual 
features have also been exploited in other fields, e.g. for the 
classification of 3D point clouds (Xiong et al., 2011).  
 
Instead of implicitly integrating context in the classification 
process by using contextual features, CRF offer the possibility 
to model relations between neighbouring image sites as well as 
relations between image sites at different layers directly, thus, 
considering context explicitly. There are several multi-layer 
CRF approaches making use of pair-wise potentials (Kosov et 
al., 2013; Hoberg et al., 2015; Yang and Förstner, 2011). In our 
previous work, we have proposed a two-layer CRF for the 
classification of land cover and land use, where the statistical 
dependencies between land cover and land use are modelled 
explicitly by pair-wise potentials (Albert et al., 2014b). 
However, this limitation to pair-wise potentials is also a major 
drawback of these approaches. Complex dependencies between 
more than two variables, like the configuration of several land 

cover segments within a land use object, cannot be modelled 
appropriately in this way. By defining a higher order potential, 
it is possible to model complex dependencies between more 
than two random variables explicitly. Higher order potentials 
have been exploited e.g. for image classification (Kohli et al., 
2009). The authors present a class of higher order potentials, 
referred to as PN-Potts model, which favour individual pixels 
within a segment to take the same label. Due to the structure of 
this potential, a solution is found efficiently based on graph 
cuts. Wegner et al. (2013) applied higher order potentials based 
on the PN-Potts model for the extraction of road networks from 
aerial images. In general, inference on higher order potentials is 
challenging, especially for generic formulations. Standard 
inference algorithms can effectively approximate a solution for 
potentials involving only a limited number of variables. In our 
case, each land use label depends on all spatially overlapping 
super-pixels, which leads to a generic formulation of higher 
order potentials involving a large number of variables. 
 
Roig et al. (2011) propose a method to overcome the problem of 
efficient inference in higher order CRF by using an iterative 
inference algorithm. In each iteration, they determine a partial 
solution by minimizing an approximated energy function. The 
approximation is achieved by replacing the higher order terms 
by constants, thus, simplifying the higher order potentials to 
unary terms. As a consequence, the approximated energy 
function can be minimized using standard inference algorithms. 
In each iteration, the constants are updated based on the 
previous partial solution. Their algorithm proceeds iteratively 
until the energy does not decrease anymore. However, their 
higher order potentials model quite simple dependencies. In 
detail, they propose an approach for the simultaneous 
classification of objects in different views of a scene. Higher 
order potentials are used to consider occlusions among objects 
within one view as well as the consistency of the classification 
result amongst different views. 
 
Multi-stage inference procedures have also been proposed by 
Munoz et al. (2010) for 2D scene analysis based on image data 
and by Xiong et al. (2011) for 3D scene analysis based on 
terrestrial point clouds. Both approaches rely on hierarchical 
segmentations of image or point cloud data, where each 
segmentation result forms one level in the hierarchy. In contrast 
to Roig et al. (2011), their methods do not rely on graphical 
models to capture contextual relations. Instead, they model 
contextual dependencies between and within the hierarchies by 
using contextual features in a sequence of classifiers. An 
iterative inference procedure is applied to propagate the context 
information between and within the hierarchies. The inference 
procedure consists of a sequence of independent classifiers, 
each classifier taking into account the output of the previous 
one to encode context. For this purpose, they derive contextual 
features describing spatial or hierarchical relationships based on 
the predicted label distribution obtained by the previous 
classifier. These features are used as input for the next classifier 
in addition to image-based features. This leads to a refinement 
of the class predictions in the inference process. Whereas 
Munoz et al. (2010) proceed only down the hierarchy and stop 
at the bottom level, the inference procedure by Xiong et al. 
(2011) is also designed for reversed and iterative processing. By 
using contextual features, the authors circumvent the difficulties 
associated with modelling complex dependencies by higher 
order potentials, while not suffering from the expressiveness of 
context information and its positive effect on the classification 
results. Compared to a standard inference algorithm in CRF, all 
steps in the inference procedure, i.e. all classifiers, have to be 
trained beforehand. Furthermore, the selection of adequate 
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context features requires a certain degree of knowledge about 
the characteristics of the contextual relations.  
 
1.3 Contributions 

We propose an approach for the simultaneous labelling of land 
cover and land use, where both classification tasks mutually 
benefit from each other during inference. A simultaneous 
classification of land cover and land use is desirable due to 
naturally inherent relations between both tasks. The integration 
of these contextual dependencies into classification is supposed 
to lead to an improvement of the classification accuracy.  
 
In order to solve both tasks simultaneously, so that both 
classification tasks mutually influence each other, we propose 
an iterative inference algorithm. It is an extension of the two-
step approach proposed in (Albert et al., 2014a), which ties 
together land cover and land use classification in a principled 
manner. In our approach, contextual relationships between land 
cover and land use are modelled implicitly by contextual 
features. This kind of features provides a better description of 
the complex statistical dependencies between land cover and 
land use than it could be realized by pair-wise potentials such as 
those applied in (Albert et al., 2014b). We use contextual 
features inspired by Munoz et al. (2010) and Xiong et al. 
(2011), which take into account the output of the classifier at 
the other layer. These features have the advantage of 
considering uncertainties of the class predictions, being based 
on the beliefs for all classes rather than a single label. In order 
to model the spatial dependencies within each layer, we apply 
CRF for land cover and land use classification, respectively. In 
our previous work, this has been shown to be an appropriate 
model for that kind of relationship. 
 
The iterative inference procedure is inspired by Roig et al. 
(2011). In each iteration, we determine the most probable label 
configuration at each layer separately. Afterwards, the 
contextual features are updated based on the classification 
results of the other layer, and, finally, this information is 
propagated between both layers, resulting in a refined 
prediction at each layer. Whereas Roig et al. (2011) propagate 
information by updating the constants related to higher order 
potentials, we directly update the association and interaction 
potentials in each CRF after updating the underlying feature 
values. The update of their higher order potential is exclusively 
based on the current labelling obtained in the partial solution. In 
contrast, our approach additionally considers the beliefs for all 
labels obtained in the partial solutions. The main idea of this 
approach is that semantic inter-level context helps to refine the 
class predictions, which, in turn, leads to more expressive 
context information. The inference procedure is repeated until 
the classification result does not change anymore. 
 
This paper focuses on the structure of the inference procedure 
and the design of the contextual features. A main benefit of this 
approach is that it combines the advantages of a unified model, 
where uncertainties of class predictions are considered, with the 
benefit of modelling the complex dependencies between land 
cover and land use appropriately. Our model tries to determine 
the most probable label configuration of the two layers 
simultaneously without taking early decisions. In contrast to the 
two-step strategy, our approach is able to correct errors made in 
a previous classification, especially those where a wrong 
decision is taken with a high uncertainty, i.e. a low belief. For 
this purpose, the predicted beliefs for all classes serve as input 
for the extraction of contextual features. Compared to the use of 
higher order potentials, training and inference are easier, 

because algorithms can be simply adopted from the standard 
CRF and carried out in an iterative procedure. 
 
 

2. METHODOLOGY 

2.1 Conditional Random Fields 

Conditional Random Fields were introduced by Kumar and 
Hebert (2006) for image classification. CRF are undirected 
graphical models, consisting of nodes ݊ and edges ݁. The nodes 
represent the image sites, e.g. pixels or segments. The edges 
link adjacent nodes and model statistical dependencies between 
class labels and data at neighbouring image sites. The class 
labels of all image sites are combined in a label vector ܡ ൌ
ሾݕଵ, … , ,௜ݕ … , 	݅ ௡ሿ, whereݕ ∈ ܵ is the index of an image site and ܵ 
is the set of all image sites. The goal is to assign the most 
probable class labels	ܡ from a set of classes ܮ ൌ ሾ݈ଵ, … , ݈௠ሿ to all 
image sites simultaneously considering the data ܠ. CRF are 
discriminative classifiers, thus directly modelling the posterior 
probability ܲሺܠ|ܡሻ of the label vector ܡ given the data ܠ:  
 

ܲሺܠ|ܡሻ ൌ
1

ܼሺܠሻ
ෑ߮௜ሺݕ௜, ሻܠ ∙ෑෑ ߰௜௝൫ݕ௜, ,௝ݕ ൯ܠ

ఠ

௝	ఢ	ே೔௜	ఢ	ௌ

.
௜ ఢ ௌ

 (1) 

 

In equation (1), ߮௜ሺݕ௜,  ሻ are the association potentials andܠ
߰௜௝൫ݕ௜, ,௝ݕ  ൯ are called the interaction potentials. The associationܠ
potential ߮௜ሺݕ௜,  ௜ atݕ ሻ models the relations between class labelܠ
site ݅ and the observations ܠ. The interaction potential 
߰௜௝൫ݕ௜, ,௝ݕ  ௝ ofݕ ௜ andݕ ൯ models the relations between the labelsܠ
adjacent nodes and the observations ܠ. The partition function 
ܼሺܠሻ acts as a normalization constant. The variable ௜ܰ refers to 
the neighbourhood of image site ݅. The parameter ߱ determines 
the weight of the interaction potential relative to the association 
potential, and, thus, defines the influence of the interaction 
potential in the classification process. CRF represent a general 
framework, which allows introducing various functional models 
for both potentials (Kumar and Hebert, 2006). Thus, one can 
choose arbitrary discriminative classifiers with probabilistic 
outputs ܲሺݕ௜|ܠሻ for both types of potentials. 
 
2.2 Two-level Graphical Model  

2.2.1 Graph Structure: In order to realize a simultaneous 
classification of land cover and land use, where both 
classification tasks mutually support each other, we design a 
graphical model consisting of two separate layers. The layers 
correspond to hierarchical levels and are arranged one above the 
other without being connected by edges. We distinguish a land 
cover layer and a land use layer. Each layer corresponds to an 
undirected graphical model, which consists of nodes and intra-
layer edges. Figure 1 illustrates the design of the two-level 
graphical model. Inter-level context, i.e. the statistical 
dependencies of land cover and land use, are modelled via 
contextual features. These features are derived from the 
classification results of spatially overlapping image sites in both 
layers. Inter-level context features form additional observations, 
which are assigned to all nodes they depend on. We want to 
estimate the class labels for land cover ݕ௜

௖ and land use ݕ௞௨ as 
random variables for each node i and k in the corresponding 
layer. The superscript indicates whether the variable belongs to 
the land cover (c) or land use (u) layer.   
 
Both layers differ with respect to the image entities represented 
by the nodes, the employed features and the semantic classes to 
be distinguished. In the land cover layer, the nodes correspond 
to super-pixels extracted from the image data, whereas in the 
land use layer the nodes correspond to land use objects from a 
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geospatial database. The geometry of the image entities remains 
unchanged during the inference procedure. Examples for the 
shapes of both sites are shown in figure 2. We use a method 
proposed by Achanta et al. (2012) for the generation of super-
pixels, called Simple Linear Iterative Clustering (SLIC), which 
is based on an adapted version of k-means clustering. The size 
and compactness of the generated super-pixels can be controlled 
by parameters in order to enable a certain adaptation to spectral 
boundaries in heterogeneous areas. In homogeneous areas, 
SLIC super-pixels tend to have a compact shape. Land use 
objects are defined by land use parcels obtained from a 
geospatial database. 
 

 
 

Figure 1. Graphical model consisting of two layers: land cover 
layer (c) and land use layer (u). Nodes are depicted as circles, 
intra-layer edges as solid lines, inter-layer observations as 
rectangles connected to the dependent nodes by dashed lines. 
 

 
 

Figure 2. Region images representing super-pixels (left) and 
land use objects (right). The colours are assigned randomly. 
 
The intra-layer edges model the spatial neighbourhood of each 
node in the respective layer. The neighbourhood of a node i is 
composed of its first-order spatial neighbours, i.e. all sites that 
share a common boundary with the site represented by node i.  
 
We apply CRF according to the notation in equation (1) for land 
cover and land use classification, respectively. A superscript is 
added to the variables to indicate whether the variable refers to 
the land cover (c) or land use (u) classification. The association 
potentials  c(ݕ௜

௖, x) and  u(ݕ௞
௨, x) model the relations between 

class labels ݕ௜
௖, ݕ௞

௨ and the data x. ߰c(ݕ௜
௖,	ݕ௝

௖, x) and ߰u(ݕ௞
௨,	ݕ௟

௨, x) 

represent the intra-layer interaction potentials, which model the 
spatial dependencies between neighbouring sites within each 
layer in consideration of the data x.  
 
2.2.2 Association Potentials: The association potential predicts 
how likely node i belongs to a class ݕ௜ given the data ܠ. The 
data are taken into account in the form of site-wise feature 
vectors ܎௜

௖ሺܠሻ and ܎௞௨ሺܠሻ for the nodes in the land cover and in the 
land use layers, respectively. The site-wise feature vectors 
contain image-based and geometrical features as well as the 
inter-level context features. Both association potentials take 
values proportional to the probability of ݕ௜

௖ and ݕ௞௨ given the 
site-wise feature vectors ܎௜

௖ሺܠሻ and ܎௞௨ሺܠሻ, i.e. ߮௖ ሺݕ௜
௖, ሻܠ ∝

ܲ൫ݕ௜
௖ห܎௜

௖ሺܠሻ൯ for the land cover layer and ߮௨ ሺݕ௞
௨, ሻܠ ∝ ܲ൫ݕ௞

௨ห܎௞
௨ሺܠሻ൯ 

for the land use layer, respectively. We choose the Random 

Forest (RF) classifier (Breiman, 2001) for determining the 
association potentials of both layers. However, each 
classification is based on a different set of features. RF has 
proven to be an efficient classifier, also in remote sensing 
applications (e.g. Schindler, 2012). Some parameters of the RF 
classifier have to be set beforehand. These are, amongst others, 
the maximum number of samples used for training, the 
maximum depth and the number of trees in the forest. Due to 
considerable differences in the structure of both classification 
tasks, these parameters have to be selected individually.  
 
2.2.3 Intra-layer Interaction Potentials: This potential models 
the dependencies of the labels of nodes ݊௜ and ௝݊ being adjacent 
within one layer, considering the data ܠ. The data are taken into 
account in the form of an interaction feature vector ૄ௜௝ሺܠሻ for 
each edge. We apply the RF classifier for determining the intra-
layer interaction potentials of both layers. In contrast to our 
previous work, we apply a statistical classifier for land cover 
classification instead of using a potential function favouring a 
smoothing effect given the data. A pure smoothing of the class 
labels of neighbouring land use objects as well as land cover 
super-pixels is not desired. This is true for super-pixels, because 
the super-pixel segmentation merges pixels with similar 
characteristics anyway. A statistical classifier favours more 
probable class configurations given the data. How probable a 
class relation is, is to be learned from real-world occurrences in 
representative training data. Thus, the interaction potential is 
modelled as the joint posterior probability of both labels ݕ௜

௖ and 
௝ݕ
௖ given ૄ௜௝

௖ ሺܠሻ, i.e. ߰௖ ሺݕ௜
௖, ௝ݕ

௖, ሻܠ ∝ ܲሺݕ௜
௖, ௝ݕ

௖|ૄ௜௝
௖ ሺܠሻሻ	for the land 

cover layer, and of both labels ݕ௞௨ and ݕ௟௨ given ૄ௞௟௨ ሺܠሻ, i.e. 
߰௨ ሺݕ௞

௨, ௟ݕ
௨, ሻܠ ∝ ܲሺݕ௞

௨, ௟ݕ
௨|ૄ௞௟

௨ ሺܠሻሻ for the land use layer. This 
corresponds to a standard classification task. Thus, it is possible 
to handle the interaction potential similar to the association 
potential by applying, for instance, RF. The difference is that 
any pair of classes at neighbouring nodes is considered as a 
single class. In our case, the interaction feature vectors ૄ௜௝

௖ ሺܠሻ 
and ૄ௞௟

௨ ሺܠሻ correspond to the concatenated site-wise feature 
vectors of two adjacent nodes. 
 
2.3 Iterative Inference Procedure 

In the inference step, the most probable label configuration ܡ is 
determined for all nodes in a CRF simultaneously. This is based 
on maximizing the posterior probability ܲሺܠ|ܡሻ of the labels 
given the data. Exact inference is computationally intractable 
(Kumar and Hebert, 2006). Therefore, only approximate 
methods can be used. An approximate solution can be obtained 
by an iterative optimization method based on message passing 
techniques, e.g. Loopy Belief Propagation (LBP) (Frey and 
MacKay, 1998). This inference method is applied for the 
classification in both layers, respectively. However, rather than 
performing LBP in both layers independently, we apply a joint 
iterative inference procedure in order to propagate contextual 
information between both layers during inference.  
 
Initial values of the inter-level context features are derived from 
an initial classification, before starting the inference procedure. 
Here, this initial classification is carried out for both training 
and test data similar to the cross validation procedure applied in 
the experimental evaluation. For this purpose, the training and 
test data are divided in disjoint groups. In each test run, we use 
one group for estimating an initial classification result and all 
others for training. We apply an independent RF classifier at 
each layer, where each node is classified independently from its 
neighbours exclusively based on image-based and geometrical 
features. The parameters chosen for the RF classifiers 
correspond to the ones applied for the association potentials. 
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In the first step of the procedure, a certain number of iterations 
of LBP are performed at each layer, separately. We obtain 
partial solutions for land cover and land use by calculating 
temporary beliefs and inferring a label. The standard LBP 
algorithms at each layer are then interrupted in order to refine 
the potentials based on the partial solutions. For this purpose, 
we update the inter-level context features based on the partial 
solutions obtained in the first step of the inference procedure. 
The contextual features model the statistical dependencies of 
the land cover and land use labels. Their values depend on the 
temporary beliefs per class label of the partial solution rather 
than on a single label. These features are calculated based on 
spatially overlapping image sites, i.e. any node of the land use 
layer is connected with all nodes from the land cover layer 
having a spatial overlap with the object corresponding to the 
land use node. Afterwards, we derive new values for the node 
and edge potentials at each layer by applying the respective 
classifier based on the updated site-wise feature vectors. Then, 
LBP at each layer continues at the point where it was stopped 
before the update step. The only difference is that node and 
edge potentials have changed, which affects the further 
evolution of the messages being passed. The procedure is 
repeated until a maximum number of iterations ݊ூ௧ is reached. 
The number ݊ூ௧ of iterations and the number ݊௅஻௉ of iterations in 
each LBP step are set manually based on experience. In the last 
step of the procedure, the final beliefs are calculated for each 
node based on the current messages and the node and edge 
potentials. The label with the maximum belief is assigned to 
each node.   
 
2.4 Feature Extraction 

In our approach, feature extraction is designed for input data 
derived from high-resolution aerial images, such as digital 
surface models (DSM), digital terrain models (DTM) and 
orthophotos. We extract a similar set of features for the nodes of 
each layer, but referring to different image entities. In the land 
cover layer, features are extracted for super-pixels. In the land 
use layer, features are extracted for land use objects, which are 
defined by the polygonal representation of the GIS-objects of a 
geospatial land use database. In the following description of the 
extracted features, the term ‘segments’ refers to super-pixels as 
well as land use objects. We distinguish three different sets of 
features: image-based and geometrical features, which remain 
unchanged during the inference procedure, and contextual 
features, which consist of features being updated at each 
iteration in the inference procedure. The contextual features are 
derived from the partial solutions obtained in each step of the 
inference procedure. The partial solutions provide beliefs for all 
classes rather than the belief of a single output label.  
 
The set of image-based features consists of spectral, textural 
and three-dimensional features. The spectral features consist of 
the mean, standard deviation, minimum and maximum of the 
normalized difference vegetation index (NDVI), hue, saturation 
and intensity values, which are estimated from all pixels within 
the segment. Moreover, we determine the gradient orientations 
and magnitudes from the intensity image and build a histogram 
of the gradient orientations weighted by their magnitude per 
segment. We derive 13 different features from the gradient 
histogram, for instance the minimum, maximum, mean and 
standard deviation as well as some ratio values, e.g. the ratio of 
minimum and maximum values. The textural features are 
energy, contrast, correlation and homogeneity derived from the 
Grey Level Co-Occurrence Matrix (GLCM) (Haralick et al., 
1973). The GLCM is computed from the co-occurrences of the 
intensity values of all pixels within each segment. The three-

dimensional features consist of the mean, standard deviation 
and minimum and maximum values of the height above ground 
within each segment. The geometrical features are determined 
from the polygonal representation of the segment. For the land 
use objects, the polygonal representation is obtained from a 
geospatial database. For the super-pixels, we use their contours. 
The geometrical features consist of area, perimeter, convexity, 
compactness, side ratio of the minimum enclosing rectangle, 
elongated shape, polar distance, shape index and fractal 
dimension (Hermosilla et al., 2012). Contextual features encode 
the inter-level context. For this purpose, we map the 
classification results to the pixel level, where each pixel is 
assigned the beliefs per class of the segment-based 
classification result. Subsequently, we estimate the average of 
the pixel-wise beliefs per class within each segment: 
 

௖௢௡௧௘௫௧ݔ
௟ ൌ

ଵ

∑ ∑ ௕௘௟ሺ௬೔ሻ೔∈಼೗∈ಽ
∑ ܾ݈݁ሺݕ௜ሻ௜∈௄ .              (2) 

 
In equation (2), contextual features ݔ௖௢௡௧௘௫௧௟  are calculated per 
class label ݈ ∈  ௜ሻ at theݕfrom its respective belief values ܾ݈݁ሺ ܮ
set of all pixels K within each segment. By mapping the land 
use results to the pixel-level, we can capture the fact that some 
super-pixels may correspond to more than one land use object. 
All land use objects having a spatial overlap with the respective 
super-pixel contribute to the feature calculation according to 
their degree of overlap. That is also true for the land use layer, 
where a land use object is typically not totally congruent with 
its spatially overlapping super-pixels. Furthermore, the number 
of neighbouring segments is used as a feature. In total, the set of 
features for the nodes of the land cover layer consist of 48 
image-based and geometrical features and 7 contextual features 
(one per land use class), which are combined in the feature 
vector ܎௜

௖ሺܠሻ for each node ݊௜
௖. For the land use layer, the feature 

set contains 48 image-based and geometrical features and 9 
contextual features (one per land cover class), which are 
combined in the feature vector ܎௞௨ሺܠሻ for each node ݊௞௨. 
 
2.5 Training 

CRF being a supervised classification technique, the parameters 
of the potentials are learned. In our approach, the association 
and the interaction potentials are trained separately using 
representative training data, which implies the training of the 
RF classifiers. Besides, the user has to define the weights ߱௖ 
and ߱௨. They could be determined by a procedure such as cross-
validation (Shotton et al., 2009), but this has not been carried 
out here. Currently, we assign equal weights to both potentials. 
During the training of the intra-layer interaction potentials, the 
relations between adjacent nodes are learned. This requires 
fully-labelled training data for the corresponding layer.  
 
As mentioned before, the classification is based on contextual 
features. In order to train the classifier appropriately, these 
features have to be available for the training step. However, the 
input required for the extraction of contextual features, i.e. the 
classification result, is not yet available during training. 
Therefore, an initial classification is carried out as described in 
section 2.3. The obtained classification results serve as input for 
the initial estimation of the contextual features.  
 
 

3. EXPERIMENTS 

3.1 Test Data and Test Setup 

The experiments are carried out to evaluate the effectiveness of 
the presented approach. Furthermore, we investigate the 
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influence of the size of the super-pixels on the classification 
result in order to determine a level of detail, which represents a 
good trade-off between accuracy and computation time. 
Besides, we compare the results we obtain by applying an 
iterative inference procedure to the results of the two-step 
processing strategy presented in (Albert et al., 2014a). 
 
We perform our experiments on a test site in the vicinity of 
Hameln, Germany. This test area shows various urban, but also 
some rural characteristics, such as residential areas with 
detached houses, densely built-up areas, industrial areas, a river, 
forest, cropland and grassland. The test area has a size of 
2 km x 6 km. The input data consist of an orthophoto, a DTM 
and a DSM derived by image matching. The orthophoto has a 
ground sampling distance of 0.2 m and consists of four channels 
(one near-infrared channel, three colour channels). The DSM 
and DTM provide height information at a resolution of 0.5 m 
and 5 m, respectively. Furthermore, GIS-objects of the German 
geospatial land use database forming a part of the Authoritative 
Real Estate Cadastre Information System (ALKIS®) (AdV, 
2008) are used to define the land use objects, which correspond 
to the nodes in the land use layer. The nodes of the land cover 
layer correspond to SLIC super-pixels. The segmentation is 
performed on a three-channel image, where the channels 
correspond to the difference between the DSM and the DTM 
(normalised DSM or nDSM), i.e. the height above ground, the 
intensity and the NDVI extracted from the input data. The use 
of these three secondary channels instead of the original grey 
values enables a better adaptation to boundaries of certain land 
cover segments. We extract SLIC super-pixels of the size of 
2,500 and 900 pixels in order to evaluate the influence of the 
size of the super-pixels on the classification result. The sizes of 
the super-pixels have been chosen exemplary to represent land 
cover information in two different levels of details. The SLIC 
compactness parameter is set to 20 in a range of [1, …, 100], 
which has been shown in previous tests to allow for a good 
adaptation to spectral boundaries. 
 
For training and evaluation, reference data are available for both 
layers. The reference data for the land cover layer consist of 
pixel-wise reference labels for 37 image tiles, each of size 
200 m x 200 m, obtained by manual annotation. The reference 
data for the land use layer consist of the geospatial land use 
database for the whole test area, divided into 12 blocks, each of 
size 1000 m x 1000 m. The reference for each super-pixel is 
assigned to the most frequent class label among its constituent 
pixels. However, the simple “winner-takes-all”-strategy for the 
assignment of the ground truth label to each super-pixel leads to 
inaccuracies in the training data. In the training process we 
consider these uncertainties by eliminating uncertain training 
samples with uncertain class labels, i.e., we only use super-
pixels with at least 75% consistent pixels as training samples. 
 
We distinguish nine land cover classes (building (build.), sealed 
area (seal.), bare soil (soil), grass, tree, water, rails, car, 
others), and seven land use classes (residential (res.), street, 
water, railway (rail.), agriculture (agr.), forest, others).  
 
The number of trees and the maximum depth of the RF 
classifier are set to 200 and 25, respectively, in each case this 
classifier is applied. The maximum number of training samples 
serves as bias for classes with less available training samples to 
ensure that all classes are equally represented during training 
the classifier. This parameter has to be adapted to the total 
number of samples available for training. The maximum 
number of samples is set to 5,000 per class for the association 
and 1,000 per class for the interaction potentials. The weights 

߱௖ and ߱௨ for the interaction terms are set to 1, thus, the 
interaction potentials have the same impact on the classification 
result. Both, the numbers of iterations ݊ூ௧ and ݊௅஻௉ are set to 5. 
The quantitative evaluation is based on cross-validation. For 
that purpose, the reference data are divided into 12 groups, each 
consisting of one of the 1 km2 blocks of land use reference data 
mentioned above combined with spatially overlapping land 
cover reference data. In each test run, we use one group for the 
evaluation and all others for training. This is done because the 
overall number of training samples for land use is quite small. 
In the 12 test runs, each group thus contributes to the evaluation 
once. We get a confusion matrix by site-wise comparison of the 
classification result to the reference for each layer separately; 
the comparison for the land cover layer is carried out on a per-
pixel-basis. The quantitative evaluation is based on the overall 
accuracy, kappa index, correctness and completeness values 
derived from the confusion matrix (Rutzinger et al., 2009).  
 
3.2 Results and Discussion 

3.2.1 Land Cover Classification: A quantitative evaluation of 
the results obtained by the iterative inference procedure for two 
different sizes of the super-pixels is presented in Tab. 1, which 
also contains the results obtained by the two-step processing 
strategy presented in our previous work (Albert et al., 2014a).  
 

 
CRF2-step CRFiterative, 2,500 CRFiterative, 900

Comp. 
[%] 

Corr. 
[%] 

Comp. 
[%] 

Corr. 
[%] 

Comp. 
[%] 

Corr. 
[%] 

L
an

d
 c

ov
er

 c
la

ss
es

 

build. 90.1 90.7 82.6 76.4 87.6 84.0 
seal. 79.2 82.3 74.8 66.8 81.0 71.7 
soil 68.7 66.9 70.9 92.9 73.8 84.8 
grass 79.7 86.4 82.1 79.8 82.4 82.8 
tree 79.3 76.8 83.8 83.8 85.5 84.0 
water  85.9 89.5 83.7 95.7 87.5 93.3 
rails 45.8 52.0 2.6 59.3 2.9 64.3 
car 76.0 38.7 - - 7.0 60.0 
others 31.5 12.0 0.5 88.3 4.5 57.9 

OA [%] 81.3 79.0 81.7 
Kappa [%] 76.2 72.8 76.3 
 

Table 1. Overall accuracy [%], kappa index [%], completeness 
(comp.) and correctness (corr.) values [%] for the land cover 
classes build., seal., soil, grass, tree, water and car obtained by 
applying the two-step processing strategy (CRF2-step) and the 
iterative inference procedure based on super-pixels of size 
2,500 (CRFiterative, 2,500) and 900 (CRFiterative, 900). 
 
The result of the iterative inference procedure based on super-
pixels of size 2,500 yields a mean overall accuracy of about 
79.0% and a mean kappa index of 72.8%, which are improved 
by 2.7% and 3.5%, respectively, for super-pixels of size 900. 
Compared to the result of the two-step processing strategy, 
similar accuracy values are achieved by using super-pixels of 
size 900. This is despite the fact that a class label is predicted 
for each pixel in the two-step processing strategy, which allows 
for a higher level of detail. For super-pixels, a class is predicted 
for all pixels within a super-pixel, although these pixels may 
belong to different classes. Due to the “winner-takes-all”-
strategy in the assignment of a ground truth label to each super-
pixel, some classes typically covering only small sets of pixels, 
such as car, are often merged to other classes, and, thus, are not 
represented appropriately in the training data. On the other 
hand, the segmentation of super-pixels merges pixels with 
homogeneous characteristics, even though some individual 
pixels may show untypical characteristics. Thus, a smoothing 
effect of the land cover classification result is achieved, which 
complies with the naturally inherent characteristics of land 
cover in the real world. Compared to the result of the two-step 
processing strategy, the correctness decreases for the classes 
building, sealed area and grass and the completeness decreases 
for the classes building, rails, car and others, but all other 
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completeness and correctness values are improved. For 
instance, the completeness and correctness for the classes soil 
and tree are improved by more than 5% in the case of super-
pixels of size 900. Both land cover classes benefit considerably 
from the context information about the present land use class. 
For the class water completeness and correctness increase by 
1.6% and 3.8%, respectively, based on super-pixels of size 900. 
In contrast, the completeness decreases slightly by 2.2% using 
super-pixels of size 2,500, but this goes along with a larger 
increase in correctness compared to super-pixels of size 900. 
Although the correctness for the class grass decreases, the 
completeness shows an improvement by more than 2%. The 
classes rails, car and others show a large increase in correctness 
along with a large decrease in completeness. The results for the 
classes rails and others are based on a very small number of 
samples used both in training and for testing, so that these 
numbers are hardly representative. The class car is not detected 
when using large super-pixels due to the lack of detail 
mentioned before. For the classes building and sealed area, the 
completeness decreases significantly. This large loss in 
accuracy may result from the fact that the boundaries of the 
super-pixels frequently do not match the building and sealed 
area boundaries. This is partly caused by inaccuracies in the 
DSM and similarities in their spectral characteristics. Smaller 
super-pixels represent the land cover segments more accurately 
in a geometric sense, and they can capture more details such as 
cars or small trees. Larger super-pixels partly cover different 
land cover classes, which leads to inaccuracies. 
 
3.2.2 Land Use Classification: A quantitative evaluation of the 
results obtained by the iterative inference procedure for two 
different sizes of the super-pixels is presented in Tab. 2. For 
comparison reasons, the results of the two-step processing 
strategy are also listed there. 
 

 
CRF2-step CRFiterative, 2,500 CRFiterative, 900

Comp. 
[%] 

Corr. 
[%] 

Comp. 
[%] 

Corr. 
[%] 

Comp. 
[%] 

Corr. 
[%] 
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ss

. res. 89.2 96.1 88.7 95.7 88.9 95.9 
street 85.6 73.3 84.6 72.3 83.8 72.7 
rail. 21.1 65.0 23.7 96.8 24.9 86.3 
water 51.2 74.6 41.1 85.9 42.9 93.3 
agr. 75.2 81.4 83.5 80.6 86.0 73.9 
forest 38.4 68.5 80.1 63.3 81.4 63.4 
others 80.5 55.8 75.9 60.7 72.6 60.6 

OA [%] 85.5 84.8 84.7 
Kappa [%] 73.4 74.3 74.2 

 

Table 2. Overall accuracy [%], kappa index [%], completeness 
(comp.) and correctness (corr.) values [%] for the land use 
classes res., street, rail., water, agr., forest and others obtained 
by applying the two-step processing strategy (CRF2-step) and the 
iterative inference procedure based on super-pixels of size 
2,500 (CRFiterative, 2,500) and 900 (CRFiterative, 900). 
 
The result obtained by the iterative inference procedure based 
on super-pixels of size 2,500 achieves a mean overall accuracy 
of 84.8% and a mean kappa index of 74.3%. For super-pixels of 
size 900, these values stay nearly the same. Compared to the 
results of the two-step processing strategy, the mean overall 
accuracy shows a slight decrease by less than 1%. In contrary, 
the mean kappa index is improved in both cases by approx. 1%. 
For the classes residential area and street, completeness and 
correctness do not change significantly compared to the results 
of the two-step processing strategy. However, the completeness 
and correctness values are improved for certain classes. For 
both super-pixel sizes, the class railway shows a large increase 
in correctness by more than 20% and a smaller improvement in 
completeness by more than 2%. Furthermore, the correctness 
increases for the classes water and others by more than 10% 
and 4%, respectively. However, this goes along with a decrease 

in completeness by a similar magnitude for both classes. In 
contrary, the completeness values of the classes agriculture and 
forest are improved by more than 8% and 40%, respectively, 
but this goes along with a much smaller decrease in correctness. 
The largest improvement is obtained for those classes being 
currently underrepresented in the training data, e.g. forest, 
agriculture, water and railway. Due to a lack of available 
training samples, these classes benefit the most from additional 
context information provided by the land cover classification.  
 
3.2.3 Discussion: In the case of land cover classification, the 
quantitative evaluation shows that reducing the size of the 
super-pixels has a positive influence on the classification 
accuracy. By using super-pixels of size 900, we achieve quite a 
similar level of accuracy compared to the pixel-based land 
cover classification result obtained by the two-step processing 
strategy presented in our previous work. Furthermore, the 
completeness and correctness are improved for certain classes, 
especially those which cover large, continuous areas in the real 
world, e.g. forest, agriculture and water. On the other hand, the 
accuracy for classes covering smaller areas, such as building, 
decreases. While achieving a similar level of accuracy, the 
number of nodes and thus the computational effort is 
significantly reduced by using super-pixels rather than pixels. In 
the case of land use classification, we also achieve a similar 
level of accuracy compared to the two-step processing strategy, 
but the completeness and correctness values are improved for 
certain classes. The largest improvement is obtained for those 
classes being currently underrepresented in the training data, 
e.g. forest, agriculture, water and railway. Although only a few 
land use objects belong to those classes, the corresponding land 
use objects cover large parts in the test area.  
 
 

4. CONCLUSION 

We propose an iterative inference procedure for simultaneous 
classification of land cover and land use. We consider different 
kinds of context information in the inference procedure. Spatial 
dependencies are modelled by pair-wise interaction potentials in 
CRFs for land cover and land use, respectively. The complex 
statistical dependencies between land cover and land use are 
modelled implicitly by sophisticated contextual features. The 
experiments show that the classification results are improved 
for certain classes compared to the results of a two-step 
processing strategy (Albert et al., 2014a). Moreover, by using 
super-pixels rather than pixels, the computational effort is 
significantly reduced without a significant loss in accuracy. 
Furthermore, we have shown that reducing the size of the super-
pixels has a positive influence on the classification accuracy.  
 
Nevertheless, further enhancements are required in order to 
improve the classification result. Remaining problems may 
result from the fact that for some classes we currently have only 
a low number of training samples, thus, not all classes are 
properly and equally represented in the training data. Therefore, 
we want to apply our approach on more test areas with different 
characteristics and more training data, especially for currently 
underrepresented classes.  
 
Our approach requires an adequate set of features. Selecting 
these features requires a certain degree of knowledge about the 
overall characteristics of land use classes and their relations to 
land cover distributions within a land use object. In future work, 
we want to investigate the impact of the extracted features on 
the classification result in order to determine an appropriate set 
of features. Alternatively, in order to avoid the challenge of an 
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adequate feature selection process, complex dependencies can 
also be modelled explicitly in a CRF by using higher order 
potentials. In future work, we aim to investigate whether the 
statistical dependencies between land cover and land use can be 
modelled explicitly and probably more appropriately as inter-
layer interaction potentials using higher order cliques. This 
requires a suitable model, which on the one hand, can capture 
the complex dependencies between land cover and land use, and 
on the other hand, allows efficient inference.  
 
In our current approach, the number of different land use 
classes to be discriminated is rather small. In fact, the current 
class structure corresponds to the coarsest semantic level of the 
geospatial database. As it is our goal to achieve a very fine 
semantic resolution of land use classes, further experiments 
have to be carried out in order to determine the maximum level 
of semantic resolution which still delivers acceptable results. 
 
Finally, the presented method is the first step of a scheme for 
updating the given geospatial database. Currently, the geometric 
delineation of the geospatial objects is assumed to be correct, 
which might not always be the case. Therefore, we aim to infer 
changes to the geometric outline of objects automatically, e.g. 
by splitting and merging objects.     
 
 

ACKNOWLEDGEMENT 

We gratefully thank the Landesamt für Geoinformation und 
Landesvermessung Niedersachsen (LGLN) and the Landesamt 
für Vermessung und Geoinformation Schleswig Holstein 
(LVermGeo) for providing data and support of this project. 
 
 

REFERENCES 

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P. & 
Susstrunk, S., 2012. SLIC superpixels compared to state-of-the-
art superpixel methods. IEEE Transactions on Pattern Analysis 
and Machine Intelligence 34(11), pp. 2274-2282. 
 

Albert, L., Rottensteiner, F., Heipke, C., 2014a. Land Use 
Classification using Conditional Random Fields for the 
Verification of Geospatial Databases. In: ISPRS Annals of 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, vol. II-4, pp. 1-7. 
 

Albert, L., Rottensteiner, F., Heipke, C., 2014b. A two-layer 
Conditional Random Field model for simultaneous 
classification of land cover and land use. In: International 
Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, vol. XL-3, pp. 17-24. 
 

Arbeitsgemeinschaft der Vermessungsverwaltungen der Länder 
der Bundesrepublik Deutschland (AdV), 2008. ALKIS®-
Objektartenkatalog 6.0. Available online (visited 16/07/2014):  
http://www.adv-online.de/AAA-Modell/Dokumente-der-
GeoInfoDok/ 
 

Breiman, L., 2001. Random Forests. Machine Learning 45, pp. 
5-32.  
 

Frey, B. and MacKay, D., 1998. A revolution: Belief 
propagation in graphs with cycles. In: Advances in Neural 
Information Processing Systems, vol. 10, pp. 479-485. 
 

Haralick, R. M., Shanmugan, K., Dinstein, I., 1973. Texture 
features for image classification. IEEE Transactions on 
Systems, Man and Cybernetics 3, pp. 610-621. 
 

Helmholz, P., Rottensteiner, F., Heipke, C., 2014. Semi-
automatic verification of cropland and grassland using very 
high resolution mono-temporal satellite images. ISPRS Journal 
of Photogrammetry and Remote Sensing, vol. 97, pp. 204-218. 
 

Hermosilla, T., Ruiz, L.A., Recio, J.A., Cambra-López, M., 
2012. Assessing contextual descriptive features for plot-based 
classification of urban areas. Landscape and Urban Planning 
106(1), pp. 124-137. 
 

Hoberg, T., Rottensteiner, F., Feitosa, R. Q., Heipke, C., 2015. 
Conditional Random Fields for multitemporal and multiscale 
classification of optical satellite imagery. IEEE Transactions on 
Geoscience and Remote Sensing 53(2), pp. 659-673. 
 

Kohli, P., Ladicky, L., Torr, P., 2009. Robust Higher Order 
Potentials for Enforcing Label Consistency. Int. Journal of 
Computer Vision 82(3), pp. 302-324.  
 

Kosov, S., Rottensteiner, F., Heipke, C., 2013. Sequential 
Gaussian Mixture Models for two-level Conditional Random 
Fields. 35th German Conference on Pattern Recognition 
(GCPR), LNCS 8142, Springer, Heidelberg, pp. 153-163.   
 

Kumar, S., Hebert, M., 2006. Discriminative Random Fields. 
Int. Journal of Computer Vision 68(2), pp. 179–201. 
 

Munoz, D., Bagnell, A., Hebert, M., 2010. Stacked Hierarchical 
Labeling. European Conference on Computer Vision 2010, Part 
VI, LNCS 6316, pp. 57-70.  
 

Roig, G., Boix, X., Shitrit, H. B., Fua, P., 2011. Conditional 
Random Fields for Multi-Camera Object Detection. IEEE Int. 
Conference on Computer Vision 2011, pp. 563-570.  
 

Rutzinger, M., Rottensteiner, F., Pfeifer, N., 2009. A 
comparison of evaluation techniques for building extraction 
from airborne laser scanning. IEEE Journal of Selected Topics 
in Applied Earth Observations and Remote Sensing 2(1), pp. 
11-20. 
 

Schindler, K., 2012. An overview and comparison of smooth 
labeling methods for land-cover classification. IEEE 
Transactions on Geoscience and Remote Sensing 50, pp. 4534-
4545. 
 

Shotton, J., Winn, J., Rother, C., Criminisi, A., 2009. 
TextonBoost for image understanding: multi-class object 
recognition and segmentation by jointly modelling texture, 
layout, and context. Int. Journal of Computer Vision 81(1), pp. 
2-23.  
 

Wegner, J. D., Montoya-Zegarra, J. A., Schindler, K., 2013. A 
higher-order CRF model for road network extraction. IEEE 
Conference on Computer Vision and Pattern Recognition, pp.  
1698-1705.   
 

Xiong, X., Munoz, D., Bagnell, J.A., Hebert, M., 2011. 3-D 
Scene Analysis via Sequenced Predictions over Points and 
Regions. IEEE Int. Conference on Robotics and Automation 
2011, pp. 2609-2616.  
 

Yang, M. Y., Förstner, W., 2011. A hierarchical conditional 
random field model for labeling and classifying images of man-
made scenes. ICCV Workshop on Computer Vision for Remote 
Sensing of the Environment 2011, pp. 196-203. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-3/W5, 2015 
ISPRS Geospatial Week 2015, 28 Sep – 03 Oct 2015, La Grande Motte, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
Editors: U. Stilla, F. Rottensteiner, and S. Hinz 

doi:10.5194/isprsannals-II-3-W5-369-2015

 
376




